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Figure 1: Structure-preserving editing for laser cutting (a) represents laser-cut 3D models as volumes, whenever possible. This allows users to manipulate 
models efficiently using volume-based tools. (d) It represents laser-cut 3D models as a 3D arrangement of plates, when users want to manipulate models in 

detail using plate-based tools. (b) The key to making volumetric and plate-based representations work within the same model is that our architecture 
demotes models represented as volume to plates, when users apply plate-based tools, and it (c) promotes models represented as plates to volumes, when 

users apply volume tools anywhere. (e) This approach allows users to manipulate 3D models that are complete plate-like elements with volumetric 
elements, resulting in a level of complexity not possible with previous tools.   

We present a 3D editor for laser cutting that extends the range of models that users can manipulate. Our system gives users control over the detailed 

elements of laser cutting, i.e., individual plates and the associated joints, yet at the same time also allows for efficient editing by means of volumetric 

tools while preserving the structure of plates in the model. Our system consists of four functional groups: (1) We started with a fabrication-aware 3D 

editor capable of handling volumetric models (kyub [Baudisch 2019]). This subsystem represents 3D models as a single volume. (2) We added a 

second subsystem that represents laser-cut models as an arrangement of plates in 3D. This allowed us to add tools that allow manipulating individual 

plates. (3) We unified these two subsystems by adding a demotion mechanism that breaks volumes down into multiple plates, to allow users to apply 

plate tools to volumes, as well as (4) a promotion mechanism, which infers volumetric substructures from sets of plates, to allow users to apply 

volume-based tools to plate structures. We validated the resulting system by recreating the 100-model benchmark of assembler3 [Roumen 2021]. 

Our combined system successfully recreated 87 of the models, compared to 9 with a volume-only baseline system (kyub [Baudisch 2019]) and 15 

with a plate-only baseline system (flatFitFab [McCrae 2014]). 
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1 INTRODUCTION 

Historically, there have been two distinct approaches to 3D editing for laser cutting: (1) systems aiming at maximizing expressiveness 

in terms of shape represent 3D models as an arrangement of intersecting plates, such as FlatFitFab [McCrae 2014], Fabrication-aware 

design [Schwartzburg 2013], or SketchChair [Saul 2011]. In contrast, (2) systems aiming at maximizing sturdiness and efficiency 

represent 3D models as a volume, such as the conversion tools Platener [Beyer 2015], Slicer for Fusion360 or Fresh Press Modeler 

[Chen 2016], various box makers (such as make-a-box.io), or the volumetric editor  kyub [Baudisch 2019]. 

 

Figure 2: Structure-Preserving Editing allows users to ŎǊŜŀǘŜ ƳƻŘŜƭǎ ǘƘŀǘ ǘǊŀŘƛǘƛƻƴŀƭƭȅ ŎƻǳƭŘ ƻƴƭȅ ōŜ ŎǊŜŀǘŜŘ ŀƴŘ ƳŀƴƛǇǳƭŀǘŜŘ ōȅ ƘŀƴŘ ǳǎƛƴƎ άŦŀōǊƛŎŀǘƛƻƴ 
ǳƴŀǿŀǊŜέ ƳƻŘŜƭƛƴƎΦ ¢ƘŜǎŜ ƘȅōǊƛŘ ƳƻŘŜƭǎ Ŏƻƴǘŀƛƴ ǇƭŀǘŜǎ όƘƛƎƘƭƛƎƘǘŜŘ ƛƴ ȅŜƭƭƻǿύ ŀƴŘ ǾƻƭǳƳŜǘǊƛŎ ŜƭŜƳŜƴǘǎ 

Unfortunately, many laser-cut models are neither all-volume nor all-plate, such as musical instruments, furniture, and scale 

models. As of today, these can be neither created nor manipulated with any of the tools and systems listed above, forcing designers 

to revert to general-purpose 3D editors, such as Fusion360 or OnShape.com or even to 2D drawing programs, such as CorelDraw or 

Adobe Illustrator. Neither of these offers any specific support for laser-cutting, thus making users an order of magnitude less efficient. 

In this paper, we tackle the editing of volume + plate models from a system-building angle. As illustrated by Figure 1, we proceed 

in four steps. Our structure-preserving editing for laser cutting (a) represents laser-cut 3D models as volumes, whenever possible. 

This allows users to manipulate models efficiently using volume-based tools. (d) It represents laser-cut 3D models as a 3D 

arrangement of plates, when users want to manipulate models in detail using plate-based tools. (b) The key to making volumetric 

and plate-based representations work within the same model is that our architecture demotes models represented as volume to 



plates, when users apply plate-based tools, and it (c) promotes models represented as plates to volumes, when using volumetric 

tools. 

As illustrated by Figure 2, our approach allows users to create and manipulate 3D models that are neither all-plate nor all-volume, 

resulting in a level of complexity not possible with previous tools. This paper presents a data-structure contribution, we implement 

it at the example of integration with kyub tools, but it is not limited to that specific implementation. 

We have validated the resulting system by recreating the 100-model assembler3 benchmark ([Roumen 2021], which in turn is 

based on models from Thingiverse.com).Our combined system successfully recreated 87 of the models, compared to 9 with a volume-

only baseline system (kyub [Baudisch 2019]) and 15 with a plate-only baseline system (flatFitFab [McCrae 2014]). 

2 CONTRIBUTION, LIMITATIONS & BENEFITS 

Our main contribution is the integration of volumetric and plate-based modeling paradigms in a single system that allows users to 

edit laser-cut models in structure-preserving fashion. Building on a volume-based editor [Baudisch 2019], we add three key 

elements, i.e., (a) a subsystem for plate-based editing structurally similar to volume-based editing so as to allow for a tight 

integration, (b) a demotion mechanism from volumes to plates, and (c) a promotion mechanism from plates to volumes. It is the 

combination of these four elements that addresses the challenge. 

We are thus making a systems contribution, i.e., our main contribution is not a single, iconic invention, but our contribution lies in 

how we put multiple (some novel, some previously explored) elements together, forming a new whole. Our main algorithmic 

contribution is the presented promotion mechanism. 

While we demonstrate our approach by building on an existing 3D editor for laser cutting (kyub) the concept of a two-tiered 

system that represents some parts of a model as plates while representing others as volumes and allows switching between them, 

either by means of promotion and demotion is independent of the specific implementation, making our insights equally relevant to 

researchers working with other platforms (such as, FlatFitFab [McCrae 2014]).  

The presented system allows users to create models previously only possible with the help of general-purpose 3D or 2D editors, 

but with the efficiency of a fabrication-aware tool, as we demonstrate by recreating 87 of the 100 models from the assembler3 

benchmark [Roumen 2021], as well as new complex models, such as the playable acoustic guitar shown in Figure 1e and models 

shown in Figure 2.  

Limitations of our system include that our current set of plate tools does not offer tools for free-form editing (as offered, for 

example, by FlatFitFab [McCrae 2014]) and offers only limited control over alignment, precision, and symmetry. The system is built 

on the assumption of rigid materials. 

3 THE PLATE-BASED SUBSYSTEM  

We start by presenting our plate-based subsystem. As illustrated by Figure 3, we designed these tools to be consistent with the 

volume-based tools provided by the platform we built on [Baudisch 2019]. 

 

Figure 3: We designed the tools of the plate-based subsystem to be consistent with the volume-based tools provided by the platform we built on 
[Baudisch 2019].  

This consistency across subsystems allows for a reduced user interface: as illustrated by Figure 3, it allows us to overload the edit 

functions for plates onto the same functions that manipulate volumes. 

In addition to the volume-inspired tools shown above, we added tools that help to arrange plates in 3D. The workflow shown in 

Figure 4 adds plates at right angles or stacks them onto existing plates. The move tool and rotate tool allow users to fine-tune the 

arrangement.  



 

Figure 4: Various add plate tools allow arranging plates in 3D. The move tool allows users to fine-tune their positioning.  

The attach tool shown in Figure 5 also extends to plates but presents additional options to users on how to arrange plates in 3D 

after attaching. 

 

Figure 5: (a) In contrast to the attach tool of the volumetric subsystem, (b) the plate-attach tool provides additional 3D arrangement options. 

The plate tools shown above allow constructing a range of basic models, such as the ones shown in Figure 6.  

 

Figure 6: Simple models made using plate tools alone.  

The same tools also allow somewhat more complex models, such as the VR headset shown in Figure 7. However, this workflow 

already hints at the limited efficiency of a purely plate-based workflow. 

 

Figure 7: Plate and edit tools allow creating a wide range of models, albeit with limited efficiency (VR headset, id:638605). 

4 PROMOTION  

The inefficiency of a purely plate-based workflow becomes obvious when we try to modify the model from Figure 7. As illustrated 

by Figure 8, making the headset taller now requires users to stretch five plates, move the top plate, doing so in the right order, and 

getting the resulting alignment right. This is obviously not desirable.  



What we want instead is to pull up the top plate and have the rest of the model follow its lead as shown in Figure 8b, similar to 

pushpull++ [Lipp 2014]. We get this type of volume-based operation naturally from models that live in the volume-based subsystem. 

Naturally, we want this type of functionality also for models that originated in the plate-based subsystem. 

 

Figure 8: (a) Once demoted to plates, making a VR headset 1cm taller requires six user interactions. (b) Making the same volumetric modification is a single 
interaction. 

We address this by adding what we call the promoter. The promoter is invoked whenever users apply a volume-based tool. The 

promoter now checks the clicked model: if it is already in volumetric representation, it is done and simply invokes the tool. If the 

model is in plate-based format, however, the promoter searches the model for volume-like substructures, translates them into a 

volumetri c representation (the promotion), and then applies the tool. 

As illustrated by Figure 9, this allows volumetric structures created from plates to be manipulated using volumetric tools, here 

ȰstretchȱȢ 

 

Figure 9: Consecutive add plate tools allow constructing a volume. When applying a volumetric stretch tool, the promoter detects the volume and 

stretches the plates accordingly. 

But the promoter does more. As illustrated by Figure 10a, it identifies volumes also when these are incomplete, and when they 

are part of slanted models (Figure 10b). 

 

Figure 10: (a) The promoter also identifies incomplete volumes. (b) And works for slanted volumes, here to make a separate rooftop for a dollhouse. To 
apply the plate tool after, it gets demoted (see next section on demotion). 

The key benefit of the promotion mechanism is that it relieves users from the burden to know about how a structure originated, 

as two structures that look the same can now be treated the same way. Figure 11 shows a three-plate corner created by removing 



plates from a box, as well as a three-plate corner created by assembling plates. With the help of the promoter, running in the 

background hidden from the user, either one can be stretched using the stretch tool, producing the same result. 

 

Figure 11: The promoter treats the shown 3-plate assembly the same, irrespective of whether it was created by combining three plates or by removing 
three plates from a box.  

5 DEMOTION  

Going back to the headset, the workflow shown in Figure 7  clearly is not the most efficient way of creating this 3D model. As 

illustrated by Figure 12, the tools from the volume-based subsystem get users started much faster. However, eventually users need 

to use plate tools to get the details right, such as the divider between the eyes and the overextended plates. 

We enable this scenario with the counterpart to the promoter, the demoter. As shown in Figure 12, when users try to apply a plate 

tool to a model that lives in the volume-based subsystem, the demoter breaks the plates that are touched by the plate into plates, 

allowing individual plates to be moved or stretched. 

 

Figure 12: Starting with a volume allows re-creating the VR headset from Figure 7 more efficiently. The part of the model shown in yellow is demoted to 
plates to allow for the plate tools to apply. 

We found this demoter-based workflow, i.e., volume-based tools first, then refinement using plate-based tools to be efficient and 

the basis for many common models (Figure 13). The promoter, however, is equally crucial for this approach to modeling, as it allows 

ÍÁËÉÎÇ ÌÁÔÅ ÍÏÄÉÆÉÃÁÔÉÏÎÓȟ ÒÁÔÈÅÒ ÔÈÁÎ ÅÎÆÏÒÃÉÎÇ Á ÓÔÒÉÃÔ Ȱ×ÁÔÅÒÆÁÌÌȱ ÐÒÏÃÅÓÓ. 

 

Figure 13: Volume-tools first, then refinement using plate tools is an efficient and thus common workflow. 

Figure 2 shows a range of models that were created using this general ȰÔÏÐ-ÄÏ×Îȱ ÁÐÐÒÏÁÃÈ ÆÒÏÍ ÖÏÌÕÍÅ ÔÏ ÐÌÁÔÅÓȢ Most of these 

models were created by starting with a volumetric element, then adding details using the plate tools, e.g., for structural reasons (e.g., 

guitar, chair), to mount components inside volumes (e.g., cajon, speaker), or to create small scale structures on a larger model (e.g., 

race car, airplane). The workflows of more complex models, such as the one shown in Figure 14, may contain multiple invocations of 

promoter and demoter.  



Figure 14 shows the workflow of modeling the guitar of Figure 1 using multiple promotion and demotion invocations. (a) Users 

start to shape the model with volumetric tools (b) the demoter turns the neck into plates as the user deletes plates and inserts a stack 

(c) the neck is promoted to a volume when stretching it longer, to then be demoted again as the user modifies detailed plates (d) to 

make the head, the stretch tool uses the promoter, and to add individual plates the demoter turns it back into plates (e) finally the 

promoter allows the head plate to be stretched into a volume and (f) the user finishes the model by adding a sound hole, bridge, 

fretboard and tuners. 

 

Figure 14: The workflows of more complex models may contain multiple invocations of promoter and demoter.  

6 ALGORITHM AND DATA STRUCTURES 

In this section we present the mechanisms of promotion and demotion. To understand demotion, we take a closer look at the data 

structure of plates and volumes. As volumes inherently consist of plates, we can break them down relatively easily. To reconstruct a 

volume, especially when the volume is incomplete, we present the promoter algorithm. 

6.1 Volume-based vs. plate-based data structures 

The promoter and demoter transition the representation of models between volume-based and plate-based data structures. 

As shown in Figure 15a, data structures in the volumetric subsystem consist of a single Mesh per model, which has its own 

coordinate system (Transform ) and operates on a series of linked surfaces (and related edges). Individual plates on the other hand 

have their own coordinate systems, allowing them to be manipulated without interfering with other plates.  

 

Figure 15: (a) The data structure of a volume vs. (b) data structure if the same model is represented by individual plates. 

As shown in Figure 15b, the moment a Mesh ÉÓ ȰÄÁÍÁÇÅÄȱȟ ÅȢÇȢȟ ÂÙ ÒÅÍÏÖÉÎÇ Á ÐÌÁÔÅȟ ÉÔ ÃÁÎÎÏÔ ÅÁÓÉÌÙ ÂÅ ÒÅÐÒÅÓÅÎÔÅÄ ÁÓ Á Mesh. 

The linked EdgeCycles  no longer form a fully linked chain, which breaks some of the assumptions the volumetric tools use when 



operating on Meshes . Our system demotes it to a set of plates, as illustrated by going through the EdgeCycles  and assigning them 

their own Transforms . The cycles remain connected but no longer share MeshPoints  or a common Transform . This gives the 

plate tools the ability to move them away from one another. 

This may seem benign at first, but the demotion means that the volumetric tools no longer apply, as they operate on that single 

coordinate system and assume full connectedness of the EdgeCycles , turning what could have been a single volume interaction 

into a long sequence of primitive plate interactions. 

This discussion of data structures extends beyond kyub in that fabrication-aware modeling environments for laser cutting would 

have some representation of plates and how they come together in terms of volumes. While it is possible to maintain both formats in 

parallel, the volumetric representation remains incomplete upon removal of plates so either the data structure or the resulting 

volumetric tools are required to handle this.  

To achieve consistent integration in the kyub system, we opted for a modeless transition between the plate-based and volume-

based representations. Alternative implementation strategies such as a plate and volume mode for an editor, more in line with 

traditional CAD tools, could benefit from the same underlying mechanisms of promotion and demotion.  

6.2 Promoter Algorithm 

At the heart of the presented system lies the promoter . Its purpose is to generate a volumetric description of the model, that tools 

utilize for volumetric editing operations, such as stretching. 

In the example shown in Figure 16ȟ ÔÈÒÅÅ ȰÐÌÁÔÅÓȱ ÁÒÅ ÍÉÓÓÉÎÇ to turn the model into a volume. The promoter  constructs proxy 

planes by finding connected edges across two coplanar plates. The L shape on the top of the model, for example, consists of two edges 

connected at one corner. These edges are coplanar and stretch across two plates. The promoter  constructs a proxy plane through 

these edges and repeats these steps for all connected coplanar edges.  

When multiple such connected coplanar edges share a corner, the promoter  inserts a proxy edge into the model at the intersection 

between the proxy planes. When both corners of the edge are shared with other connected edges, the promoter  constructs all three 

planes and inserts a proxy corner at the point where these planes intersect. Finally, it inserts edges between the proxy corner and 

the edges of the model, resulting in a closed volume.  

 

Figure 16: When coplanar edges touch in a corner, they form larger volumes with the adjacent coplanar edges.  

When there are no shared corners between sets of connected coplanar edges, there is too little information for the algorithm to 

locate a proxy corner in 3D. Instead, as shown in Figure 17, the promoter  runs the 2D QuickHull algorithm [Barber 1996] (which runs 

in O(n log(n))) on the constructed plane and inserts result as edges into the model. In this case forming a basic prism, which can then 

be used by the volumetric tools. (b) The desk organizer model shows this using a real-world example: After the promoter  found the 

rectilinear volumes, there is a single plate sticking out. Because the convex hull algorithm includes this as a volume as well, it stretches 

along when users make the model wider. 



 

Figure 17: (a) The convex hull of objects where the connected coplanar edges do not share a corner. (b) a practical implication of this case at the example 
of a desk organizer: because of the proxy prism on the left the base plate stretches with the side plates. 

Before the algorithm handles the cases presented thus far, it looks for closed volumes in the overall model. The previous cases 

therefore typically constitute of the last few plates that were not part of a volume yet. As shown in Figure 18, to detect volumes, the 

promoter  iterates over the edges in the model and groups plates together when an edge connects exactly two adjacent plates. This 

effectively results in a flood fill for simple, closed volumes, such as the guitar stand of Figure 18. 

 

Figure 18: Inferring closed volumes on this guitar stand, the yellow plates are added to the closed group. 

With full control over plates and volumes, it is possible to construct models which have plates within  a volume. To respect these, 

the promoter  runs 2D face detection (based on [Muller 1978] ) on the planes before detecting closed volumes. As demonstrated in 

Figure 19, internal plates within the volume are identified as additional faces (in this case there are four such internal plates 

connecting in an H shape to the top plate), which results in an edge within the top plate that connects to three plates instead of two. 

This ensures that the internal plate is not simply discarded, but rather causes the volume to be split into two cells when executing 

the flood fill algorithm, such that volumetric tools behave accordingly. For example, in a stretching operation, the union of the 

volumes is used, but after stretching, the individual cells restore the internal plate. 

 

Figure 19: The promoter detects internal structures using face detection.  

A special case of volumes are stacks of plates. Unlike any of the other plates in models, they are not connected using joints but 

instead glued on top of each other by users. Because there is no internal structure within a stack (it is all inherently filled with plate), 

the promoter  simply creates a volume composed of the edges of the stack.  

Figure 20 shows how the algorithm detected volumetric cells in three example models, and how volumetric stretch operations 

modify the cells yet keep the overall structure intact. 



 

Figure 20: Three example models with their associated volumes as individual cells, the images below show how stretch operations applied to these models 
stretch these cells while keeping the structure of the model intact. 

The explanation of the algorithm so far followed a bottom-up explanation; however, the actual algorithm proceeds in the opposite 

order, as shown in Algorithm 1. The algorithm recursively inserts proxy planes until all edges of the model are included in a volume. 

These planes in the next iteration are included as if they were actual plates often resulting in additional or bigger volumes to be 

found. This approach makes it easy to cache volumes as each tool interaction on the model only requires computing volumes on the 

newly added plates, extending the previously inferred volume.  

ALGORITHM 1: promoter 

Input: List of Edges in the model  

Output: Constructed Volume, Cells 

Internal data structures: Edges contain a Pointer to their Plate and what Edges on other Plates they connect to, Plates contain a 
Transform which orients them in 3D space and an EdgeCycle which is a linked list of the related Plates. CoplanarEdges contain pointer to 
the Edges they belong to. 

// find all coplanar edges in the graph and store as coplanarEdges 

coplanarEdges <- getCoplanarEdges(Edges) 

cycles <- []  

// 2D face detection splits up edges at internal plates, propagate the reference to edges 
for plane in coplanarEdges:  

    cycles.add (faceDetection(plane), plane.Edges) 

clusters <- [] 

// flood fill closed cycles that share 2 plates along an edge 
for cycle in cycles:  

    for edge in cycle: 

        if connecting two plates, add as cluster, remove from cycles 

// handle non closed volumes and internal plates 
while there are still cycles: // internal plates, add to both adjacent clusters 

    for edge in cycle: 

        if edge connects > two plates, add duplicate of cycle to clusters, remove from cycles 

        // check if the cycle connects other cycles and insert proxy edges 
        if edge connects to other cycle  

            construct two planes through the points in both cycles and add proxy edge at the intersection,  

            add to clusters,  

            remove cycle from cycles 

    // non-closing edges, use convex hull to construct proxy edges into the cycle add to clusters 
    clusters.Add(2DQuickHull(cycle)), remove cycle from cycles 

cells <- [] 



// construct cells 
for cluster in clusters:  

    if cluster contains proxy edges, insert corners at intersection between edges or proxy edges, generate proxy planes 

    cell <- new Volume from linked list of plates in cluster, unify transforms of plates 

    cells.add(cell) 

// create the encompassing volume 
Volume <-- union all cells  

return Volume,cells 

A limitation of this algorithm are models where it fails to construct corners because edges are all curved. Typical examples are 

ÓËÅÌÅÔÏÎ ÓÔÒÕÃÔÕÒÅÓ ×ÉÔÈ ÃÕÒÖÅÄ ȰÒÉÂÓȱȟ ÔÈÅ ÁÌÇÏÒÉÔÈÍ ÉÎÓÔÅÁÄ ÃÏÎÓÉÄÅÒÓ ÅÖÅÒÙ ÐÏÉÎÔ Á ÃÏÒÎÅÒ ÁÎÄ ÃÒÅÁÔÅÓ Á ÌÏÔ ÏÆ ÐÒÏØÙ ÆÁÃÅÓ. These 

produce the right volume, but no currently implemented volumetric tool makes productive use of that. More expressive fabrication-

aware versions of volumetric operations like Interactive Images [Zheng 2012] and symmetry preserving editing [Lin 2011]  support 

this, but that falls beyond the scope of this paper. As shown in Figure 21b, curved edges perform fine when stretching along the 

normal of the plane.  

 

Figure 21: (a) Detected, but less useful volumes. (b) in this case the volume is still useful when stretched along the normal of the plane.  

7 RELATED WORK 

Our work builds on research in structure-preserving shape processing, inferring user intent, interoperability of CAD representations, 

and 3D editing for laser cutting. 

7.1 Structure-Preserving Shape Processing 

Preserving structure during editing tasks is crucial in various modeling workflows, and thus, has been a topic of interest in different 

fields. [Lin 2011] demonstrate its use in the context of preserving patterns in architectural design. Users select the structure to 

preserve and repeat. When they apply high-level volumetric changes, such as stretching, the algorithm updates the model to reflect 

the target aesthetic. [Fu 2016] instead machine-learn assembly structures in objects, so that when users edit them, they look for 

semantically similar objects that make up the same assembly structure. They demonstrate this by stretching an office chair, upon 

which the system returns a bench in similar style. Im2Struct [Niu 2018]  uses a Convolutional Neural Network to detect similar 3D 

assembly structures in 2D images. Their approach is powerful in that it affords volumetric modifications to the virtual 3D model that 

are directly reflected in the 2D photograph using interactive images [Zheng 2012]. [Tian 2019] infer 3D shape programs, which they 

use as a higher level of abstraction to improve 3D reconstruction. Their parametric shape programs contain semantic information 

ÁÂÏÕÔ ÁÓÓÅÍÂÌÙ ɉÅȢÇȢȟ ÆÏÕÒ ȰÌÅÇȱ ÏÂÊÅÃÔÓ ÃÏÎÎÅÃÔÅÄ ÔÏ Á ȰÓÅÁÔȱɊȢ  

Surface2Volume [Araújo 2019] infers the internal structure of interlocking 3D printed shapes based on the color of their surface. 

[Kratt 2018] allow users to make sketch-based modifications to 3D models. They infer structures in models similar to the one users 

sketch on. Subsequently, their algorithm applies the suggested modification to similar sub-structures. 

Structure-Aware Mesh Decimation [Salinas 2015] use the opposite approach to what we do; they start out with a messy volume 

and decimate it by finding planar surfaces. Their goal is to simplify a mesh. They maintain the structural properties of models during 

decimation following three topological rules based on a graph of proxy surfaces: (1) if two nodes of the graph are not connected, they 

cannot be connected through decimation (2) the proxies cannot be degenerated into a single vertex or edge, and (3) they construct 

and preserve corners. In structuring our algorithm, we were inspired by the ÒÅÁÓÏÎÉÎÇ ÂÅÈÉÎÄ ÔÈÅÓÅ ÒÕÌÅÓ ÁÎÄ ÁÐÐÌÉÅÄ ÓÏÍÅ ȰÉÎ 

ÒÅÖÅÒÓÅȱȠ ÕÓÉÎÇ ÉÎÆÅÒÒÅÄ ÃÏÒÎÅÒÓ ÔÏ ÃÏÎÓÔÒÕÃÔ ÓÕÒÆÁÃÅ ÐÒÏØÉÅÓȟ ÓÐÌÉÔÔÉÎÇ ÖÏÌÕÍÅÓ ÁÌÏÎÇ ÉÎÔÅÒÓÅÃting plates to avoid swallowing them 

up into a larger volume (avoiding degeneration).  



7.2 Inferring user intent 

The promoter discussed in this work heavily builds on the idea of inferring the intention of users to predict the best way to support 

their workflow. [Gross 1996] approached this problem for 2D drawing, by inferring intent while the user is drawing. The more 

context users add to the drawing, the better the system detects their intention, avoiding the need for mode switches (e.g., between 

software to draw electronic circuits, charts, or images). Similarly, Teddy [Igarashi 1999] lets users draw 2D shapes and infers the 

volume intended by users.  

Chateau [Igarashi 2007] shows a different approach to deal with ambiguous user intention by suggesting different outcomes and 

letting users disambiguate. The extreme of this is using statistical modeling to predict user behavior [Zukerman 2001].  

"ÅÙÏÎÄ ÉÎÆÅÒÒÉÎÇ ÁÎÄ ÐÒÅÄÉÃÔÉÎÇ ÕÓÅÒÓȭ ÉÎÔÅÒÁÃÔÉÏÎÓȟ ÔÈÅ ÎÏÔÉÏÎ ÏÆ ÄÅÓÉÇÎ ÉÎÔÅÎÔ ÉÎ ÔÈÅ ÃÏÎÔÅØÔ ÏÆ σ$ ÍÏÄÅÌÉÎÇ ÉÓ ÉÎÔÅÎÄÅÄ ÈÉgh-

level parametric modifications to models [Kimura 1989] . [Otey 2018], show that this is more than just user-specified constraints and 

ranges anywhere from a single modeling step to the entire rationale underlying a model. Or as [Ganeshan 1994] describe in their 

ÆÒÁÍÅ×ÏÒË ÆÏÒ ÒÅÐÒÅÓÅÎÔÉÎÇ ÄÅÓÉÇÎ ÉÎÔÅÎÔȡ ȰÉÔ ÉÓ ÎÏÔ ÊÕÓÔ ÁÂÏÕÔ ÈÏ× ÂÕÔ ÁÌÓÏ why the design evÏÌÖÅÓ ÁÓ ÉÔ ÄÏÅÓȱȢ 2ÅÓÅÁÒÃÈÅÒÓ ÔÈÅÒÅÆÏÒÅ 

have looked for ways to capture such design intent in abstract representations, the PARTs framework [Hofmann 2018] allows users 

to specify functional geometry objects to represent object functionality and constraints. Grafter [Roumen 2018] similarly represents 

parts of 3D printed machines by representing the function of individual mechanisms. [Barbero 2018], show that capturing design 

intent not only helps in modeling, but it also serves to extend the level of expertise implicitly embedded in models. 

7.3 Interoperability of CAD representations 

Heterogeneous representations are a common issue in the domain of 3D modeling, [Attene 2018] provide an overview of 

representations and the trade-offs between them, their high-level categories are representations based on volumes, surfaces, 

primitives, and procedural generation. This variety of representations forces users to balance upfront how to represent objects for 

their given use-case [Gerbino 2003]. There are interchange formats like STEP [Pratt 2001] , which in principle support the full range 

of representations, but in turn require a definition and maintenance of the content in all different representations and then allow 

switching between representations. 

There are tools to convert between representations, especially converting from shape models as composed in general purpose 

3D modeling environments to fabrication-aware representations. These are typically one-way conversions making it hard or 

impossible to reverse the process. In the context of laser-cutting, the most common conversion tool is Slicer for Fusion360 

(discontinued since 2020). This tool allowed users to convert 3D models to a range of different typical structures of plates 

approximating the initial shape. Slices [McCrae 2011] is a specialized version of this achieving an even stronger relation between the 

initial volume and resulting plate structure. Fresh Press Modeler [Chen 2016] and the follow-up publication on bevel joints [Su 2018] 

achieves such conversion specifically for volumetric and watertight models. Furthermore, Platener [Beyer 2015] and CoFiFab [Song 

2016] convert generic shape models to partially laser-cut and partially 3D printed structures for fast fabrication and iteration. 

Outside of the laser-cutting domain, there are various conversion tools [Gao 2004] however this tends to be lossy, making features 

that exist in another mode undiscoverable, and typically the conversion comes at a cost of expressivity, or even require fixing of 

models that break in the process [Pauwels 2011]. For example, [Wu 2005] recover structure of meshes that may result from poor 3D 

scans. InverseCSG [Du 2018] converts primitive models based on triangular boundary representations to a CSG tree, enabling 

powerful volumetric editing. Other approaches aim to identify higher level structures in the models such as [Fish 2014] who 

represent shape families, [Tulsiani 2017] who machine-learn using primitive volumes in models to identify abstract shapes, and 

Grass [Li 2017]  detects shapes patterns allowing for high-level parametric operations. Finally, Shape-up [Bouaziz 2012] presents a 

geometry processing framework using projection operators that works reliably across polygonal meshes, volumetric meshes, point 

clouds and other discrete geometry representations. 

7.4 3D editing for laser cutting 

While laser cutters have been used for 2D fabrication traditionally, they gain momentum in producing advanced 3D models. Recent 

research investigated numerous ways to empower users in the process of creating 3D laser-cut models as part of personal fabrication 

[Baudisch 2017]. LaserStacker [Umapathi 2015] allows users to make 2.5D models by fusing stacks of plates together, StackMold 

[Valkeneers 2019] uses the same idea of plate stacks, but to create molds, which in turn create 3D objects. Furthermore, LamiFold 

[Leen 2020] enables users to create functional mechanisms using essentially 2.5D constructions of laminated plates. Constructable 



[Mueller 2015]  lets users construct 3D models for laser-cutting interactively in the machine. It forgoes the notion of an explicit 3D 

model, but encodes the artifact in combinations of elements users create. LaserFactory [Nisser 2021] extends laser cutters with other 

fabrication capacities to create an integrated assembly workflow from material to product.  

Originally, making 3D models by joining laser-cut plates was achieved using 2D vector graphics tools like CorelDraw or Adobe 

Illustrator . Tools like Joinery [Zheng 2017] enable generation of reliable joints, where springFit [Roumen 2019] and kerfCanceler 

[Roumen 2020] maintain such joints when fabricated on a different machine. With the help of CutCAD [Heller 2018] , users get an 

early preview of the resulting 3D design. Albeit domain specific, SketchChair [Saul 2011] presented an early 3D modeling 

environment for laser cutting based on sketched lines. CODA [Veuskens 2021] is a plugin for general-purpose 3D modeling 

environments (Fusion 360) that supports users by providing fabrication related constraints. FlatFitFab [McCrae 2014] and later kyub 

[Baudisch 2019] facilitated advances in 3D modelling for laser cutting by working directly on the assembled model instead of the 2D 

cutting plans. Models shared in a 3D format allow users to make high-level volumetric modifications, making these models much 

more valuable. Assembler3 [Roumen 2021a] therefore allows users to convert 2D cutting plans to such 3D models, which was later 

automated by autoAssembler [Roumen 2021b].  

In the closely related field of interactive carpentry, similar work in fabrication-aware design [Schwartzburg 2013] lead to 

computational support for the construction of interlocking furniture [Fu 2015]. [Rogeau 2021] generate joints for large-scale timber 

structures. Additionally, recent work [Noeckel 2021] reconstructs carpentry models based on images to allow for parametric 

modifications in 3D.  

8 TECHNICAL EVALUATION: RE-CREATING 100 MODELS 

To evaluate structure-preserving editing, we used our system to try and recreate the 100 models from the (assembler3 benchmark 

[Roumen 2021b], originally from thingiverse.com). the models from this benchmark were originally created using generic modeling 

software, thus exhibit a wide variety of construction methods. 

We attempted to recreate these models using three systems, i.e., (1) volume-based (original, non-modified kyub [Baudisch 2019]), 

(2) plate-based (FlatFitFab [McCrae 2014]), and (3) volume + plate (the structure-preserving system presented above). 

8.1 Results 

Figure 22 shows the number of models we managed to recreate with each of the three approaches.  

 

Figure 22: Models recreated using volumetric modeling (kyub), plate-based modeling (FlatFitFab) and our system.  

As shown in Figure 23, the models exhibited different modeling workflows: (c) we recreated 53 models with multiple usages of 

the demoter/promoter,  alternating between plate and volumetric workflows, (b) for 12 models we could use a waterfall process 

where the process is entirely volumetric (if done efficiently) with  at the end plate tools demoting the model exactly once, (a) and we 

made the remaining 35 models using plate tools only like the ones shown in Figure 6.  



 

Figure 23: The 100 models of assembler3 benchmark fall in three categories: (a) 35 models made using individual plate tools (b) 12 models made using a 
waterfall workflow and (c) 53 models that largely benefit from promotion/demotion in the modeling process. 

All 13 models we could not recreate using our tools all fall in that last category; they do not benefit from promotion/demotion but 

would require a different set of plate tools. Six of them contain plates that are mapped to a polar coordinate system, our tools operate 

on a cartesian coordinate system, making it hard/impossible to recreate those. The other seven contain highly expressive plates, our 

system allows for curvature, but such detail is better done achieved using tools optimized for expressiveness (e.g., FlatFitFab [McCrae 

2014]).  

9 CONCLUSION  

In this paper, we presented structure-preserving editing, an approach to bringing together the efficiency of volume-based editing 

with the control over details and structure offered by plate-based editing. We implemented this as two subsystemsɂone for volumes 

and one for plates. The key elements that hold the subsystems together are the promoter and demoter, which allow all tools to be 

applied to all structures. 

Our approach of starting with a volumetric tool allowed us to create a particularly uniform tool set, as the limited expressiveness 

of the boxel-based building style made it easy to create matching plate tools. Our approach of plate-based tools + volume-based tools 

+ promoter + demoter is generic in nature and inherently applicable to range of tools. 

As shown in our technical evaluation, our approach increases the space of laser-cut 3D models substantially past those than could 

be created using either system, allowing those models to be created efficiently in fabrication-aware 3D environments, rather than 

generic 3D or even 2D editors. 

Given that this paper is making a systems contribution, we did not present a user study [Greenberg 2008]. Nonetheless, we have 

put the system to actual use, such as by running a workshop were 8 teams of students from our department performed workflows 

similar to the one shown Figure 14 to design and fabricate playable custom string instruments (Figure 24). 



 

Figure 24: (a) 8 teams of students designed and (b) assembled (c) their instruments.  

We expect structure-preserving editing to be impactful in that it will not only allow users to efficiently create models more 

advanced than seen previously, but also to increase the range of laser-cut 3D models that can be shared and remixed efficiently. The 

guitar shown in Figure 1, in that sense, is not about one guitar, but in the context of structure-preserving editing a starting point that 

allows users to create a wide-range of custom guitars efficiently. In that sense, the work presented in this paper is another important 

step in the transition from historical, machine-specific, and thus hard-to-modify laser cutting formats, (such as SVG), to easy-to-

customize, sharing-friendly formats, 3D formats [Roumen 2021a] [Roumen 2021b]. 
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