
StructCode: Leveraging Fabrication Artifacts
to Store Data in Laser-Cut Objects

Mustafa Doga Dogan
doga@mit.edu
MIT CSAIL

Cambridge, MA, USA

Vivian Hsinyueh Chan
vhchan@berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

Richard Qi
rqi@mit.edu
MIT CSAIL

Cambridge, MA, USA

Grace Tang
gtang@mit.edu
MIT CSAIL

Cambridge, MA, USA

Thijs Roumen
thijs.roumen@cornell.edu

Cornell Tech
New York, NY, USA

Stefanie Mueller
stefanie.mueller@mit.edu

MIT CSAIL
Cambridge, MA, USA

ABSTRACT
We introduce StructCode, a technique to store machine-readable
data in laser-cut objects using their fabrication artifacts. StructCode
modifies the lengths of laser-cut finger joints and/or living hinges to
represent bits of information without introducing additional parts
or materials. We demonstrate StructCode through use cases for
augmenting laser-cut objects with data such as labels, instructions,
and narration. We present and evaluate a tag decoding pipeline that
is robust to various backgrounds, viewing angles, and wood types.
In our mechanical evaluation, we show that StructCodes preserve
the structural integrity of laser-cut objects.

CCS CONCEPTS
• Human-centered computing → Human computer interaction
(HCI).

KEYWORDS
unobtrusive tags; identification; data embedding; personal fabrica-
tion; laser cutting; making.
ACM Reference Format:
Mustafa Doga Dogan, Vivian Hsinyueh Chan, Richard Qi, Grace Tang, Thijs
Roumen, and Stefanie Mueller. 2023. StructCode: Leveraging Fabrication
Artifacts to Store Data in Laser-Cut Objects. In Symposium on Computational
Fabrication (SCF ’23), October 8–10, 2023, New York City, NY, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3623263.3623353

1 INTRODUCTION
Attached to objects for identification, tags are an important part
of our everyday lives and used for many applications in packag-
ing [Wang et al. 2016], shipping [Schmitz et al. 2018], robotics [Zhao
et al. 2009], and manufacturing [Rivers et al. 2012]. Tagging 3D
objects without electronics [Yamaoka et al. 2019] usually involves
sticking 1D barcodes and QR codes onto them [Holmquist 2006]
or carving, printing, or engraving the code patterns directly onto

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SCF ’23, October 8–10, 2023, New York City, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0319-5/23/10.
https://doi.org/10.1145/3623263.3623353

Figure 1: StructCode embeds data in the fabrication artifacts
of laser-cut objects, such as the patterns of (a) finger joints
and (b) living hinges, to augment objects with data. Here, the
embedded StructCodes allow narration for a painting and
status updates for a potted plant, among others.

https://doi.org/10.1145/3623263.3623353
https://doi.org/10.1145/3623263.3623353

SCF ’23, October 8–10, 2023, New York City, NY, USA Dogan, et al.

their surfaces [Matusik and Konakovic Lukovic 2023; Ozdemir and
Doubrovski 2023; Song et al. 2018]. Even though these approaches
are relatively low-cost, the barcodes may take away the attention
from the physical object itself due to its obtrusiveness, and are
typically not as durable as other tags like RFID [McCathie 2004;
Omron 2015].

To achieve unobtrusive passive tags that do not require object
modification, researchers investigated ways to use the inherent
characteristics of objects, which may manifest in the form of ei-
ther naturally occurring or engineered features. As an example of
natural unobtrusive tags, SensiCut [Dogan et al. 2021] senses the
micron-scale surface structure of materials using speckle sensing
to identify the material’s type. Similarly, Verifiable Smart Packag-
ing [Wang et al. 2016] uses radio-frequency signals that penetrate
through an object’s exterior to identify the object by its internal
structure. The second approach, engineered unobtrusive tags, of-
fers more flexibility to define how the tag should by embedded
with the object. For example, in agriculture, researchers developed
tamper-evident tags using biodegradable silk particles, allowing
for seed traceability and anti-counterfeiting [Sun et al. 2023]. In 3D
printing, G-ID [Dogan et al. 2020] uses the patterns that appear as
a byproduct of the slicing process as unobtrusive tags. However, it
is only possible to embed an identifier, and not a custom array with
multiple characters. Thus, users are unable to add data represented
in character arrays.

In this paper, the question that prompted our research was: Can
wemake use of existing fabrication artifacts of objects to store meta-
data in them? Our goal is two-fold: (1) not introducing additional
materials, parts, or features to the object, but simply make use of its
existing visual structures that arise as a byproduct of the fabrication
process. (2) The added data should be decoded from regular camera
images so the meta-information can be easily used to augment the
objects, e.g., in augmented reality (AR) applications.

Our proposed solution, StructCode, slightly varies fabrication
artifacts, i.e., the patterns resulting from joints, which does not
change the main object geometry, but can still be detected from
camera images. Thus, StructCode does not add any new features
to the object, but instead exploits the structures that are inevitable
artifacts of the fabrication process. While this idea can be applied
using many different manufacturing processes and materials that
allow for the customization of individual tangibles (to embed indi-
vidual tags), for the scope of this project we focus on laser cutting.
Laser cutting is particularly suitable because it allows the rapid
fabrication of sturdy, functional, and large-scale objects [Baudisch
et al. 2019; Dogan et al. 2021]. These typically contain many vi-
sual artifacts across their surfaces due to their finger joints and
living hinges. StructCode subtly changes the widths of these ele-
ments to represent machine-readable information. The StructCodes
can be read as part of existing AR pipelines to augment the user’s
view with information relevant to the tangible objects that they are
interacting with.

Figure 1 shows how laser-cut objects use their existing joints
to store meta-information, such as labels (e.g., used to retrieve
watering updates for the plant), context (e.g., to access the digital
model of the chair), disassembly instructions (e.g., to recycle the
bookshelf), and narration (e.g., explanatory video for the artwork
on the wall). StructCode achieves this by modifying the lengths of

Figure 2: Approaches to tagging. (a) On the object’s surface
(Seedmarkers [Getschmann and Echtler 2021], ObjGen [Ma-
tusik and Konakovic Lukovic 2023]), (b) its interior (Air-
Code [Li et al. 2017], InfraStructs [Willis and Wilson 2013]),
(c) leveraging existing joint patterns to embed data (Struct-
Code).

laser-cut finger joints and living hinges, which are inherent artifacts
of commonly laser-cut objects. The modified lengths represent
different bits while ensuring the codes are easy to capture with
a mobile camera. Because StructCodes are an inherent part of the
objects, they cannot be easily removed without causing damage to
the object. Compared to other unobtrusive tagging methods in HCI,
which use additional equipment such as infrared cameras [Dogan
et al. 2022b; Willis and Wilson 2013], StructCode only requires a
conventional RGB camera for detection, and thus can be used on
off-the-shelf mobile devices and headsets.

While this paper demonstrates the idea of opportunistic data
embedding for the example of laser-cut objects, we discuss how it
can be generalized to other types of fabricated objects in the future
in Section 9. Our contributions can be listed as follows:
• An unobtrusive and integrated tagging method that embeds data
in the existing fabrication artifacts of objects, as demonstrated for
laser cutting, and only requires a standard camera for detection.

• A tag decoding pipeline that is robust to various backgrounds,
viewing angles, and wood types.

• A set of applications showing how this opportunistic embedding
can enrich tangible interactions with laser-cut objects.

• A mechanical evaluation illustrating that the addition of Struct-
Codes maintains the overall integrity of objects.

2 RELATEDWORK
Embeddingmetadata, hyperlinks, and related documentationwithin
the physical world can provide meaningful contextualization and
allows for sharing of information [Ettehadi et al. 2021]. This has
been explored for photographs [Tancik et al. 2020], font charac-
ters [Xiao et al. 2018], charts [Fu et al. 2021], documents [Dogan
et al. 2023b; Want et al. 1999], and textiles [Zhu et al. 2023]. In this
section, we review different types of tags for three-dimensional
physical objects specifically and categorize the approaches based
on where the tag is located on the object, how much data it can
store, and how complex the associated fabrication and detection
processes are. Table 1 summarizes the capabilities of StructCodes
in the context of previous works.

2.1 Tag Location: Inside, Surface, Structure
Researchers have investigated different locations on objects to em-
bed tags [Baudisch and Mueller 2017]. One way to embed tags is
on the inside of objects (Figure 2b). For instance, AirCode [Li et al.

StructCode: Leveraging Fabrication Artifacts to Store Data in Laser-Cut Objects SCF ’23, October 8–10, 2023, New York City, NY, USA

Table 1: Comparison of previous approaches, including (a) surface and (b) interior tag embedding, to (c) StructCodes.

location (a) surface (b) interior (a) surface +
(b) interior (c) structure

LayerCode
(visual)

LayerCode
(NIR-based) Seedmarkers ObjGen AirCode InfraStructs InfraredTags G-ID StructCodes

Fabrication
method 3D printing 3D printing 3D printing or

laser cutting laser cutting 3D printing 3D printing 3D printing 3D printing laser cutting

No new feature
additions necessary?

add differently
colored layers ✓ add visual blobs engrave

visual barcodes insert air gaps insert
air gaps

insert tag of
different material ✓ ✓

Accessible and
easy fabrication ✓

needs modified
SLA printer ✓ ✓

object needs to be
partitioned and
printed separately

support material
inside needs to
be washed away

multi-material
printing with
IR-PLA

✓ ✓

Carries data?
(code capacity) ✓ ✓

used for
ID only ✓ ✓ ✓ ✓

used for
ID only ✓

Multiple codes
on the same
object possible?

1 tag per object 1 tag per object ✓ ✓ ✓ ✓ ✓
1 tag per
object ✓

Can use existing
RGB cameras on
phones/headsets?

✓

needs to be read
under sunlight
with a NIR filter

✓ ✓
needs a
projector

needs
Terahertz
scanner

needs
IR camera

needs a light
source in contact
with the object

✓

2017], InfraStructs [Willis and Wilson 2013], and InfoPrint [Jiang
et al. 2021] embed markers by adding air gaps inside 3D printed
objects. Another way is to embed tags on the surface of objects
instead (Figure 2a). For instance, Seedmarkers [Getschmann and
Echtler 2021] are visual markers optimized for aesthetics that can
be placed on the surface of either laser-cut or 3D printed objects.
ObjGen [Matusik and Konakovic Lukovic 2023] engraves Data Ma-
trix cells on the object to store the vector file it originated from.
However, since multiple codes are needed, they typically occupy
the whole object surface, resulting in an unnatural look. Tenmoku
et al. place small visual components (e.g., T-shaped or triangular) on
objects to use them as visually elegant tracking markers for mixed
reality, however, these markers do not carry any data [Tenmoku
et al. 2007], Acoustic barcodes [Harrison et al. 2012] are physical
notches that can be etched on the object surface using a laser cutter
and that create unique, identifiable bursts of sound when swiped.
LayerCodes [Maia et al. 2019] are barcodes on the surface of 3D
models printed from an infrared resin and then detected from smart-
phone camera images. SensiCut [Dogan et al. 2021] uses the natural
surface microstructure of laser-cut materials as tags.

In contrast to these prior works that added tags either on the
inside of objects or on their surface, StructCode leverages existing
visual artifacts. To combine laser-cut 2D pieces into 3D assemblies,
laser-cut objects typically contain structural elements, such as joints
and living hinges, which result in visible patterns on the object.
Several digital fabrication tools utilize these elements for a range
of objectives: Bend-A-Rule, for instance, uses living hinge patterns
as a ruler to measure the curvature of 3D surfaces [Wei and Singh
2017]. Other works modify the pattern of living hinges to adjust
their bending behavior [Barbara Ruschel Lorenzoni and Fabio Pinto
da Silva 2021; Jensen et al. 2017], FoolProofJoint modifies the widths
of finger joints to counter-act manual assembly errors [Park and
Baudisch 2022]. StructCode leverages these elements of laser-cut
parts to embed information while maintaining the structural in-
tegrity of the object and minimizing aesthetic interference. As a
result, it does not add any extra labels to objects but rather makes
use of their existing visual shape (Figure 2c).

2.2 Data Complexity: Identifiers, Information
A tag is a label that can be used either to identify items or to store in-
formation in the form of data.G-ID [Dogan et al. 2020] distinguishes
different copies of the same object by detecting which printing pa-
rameters were used for each copy. Different printing parameters
result in different surface textures, which are detectable in camera
images. Similarly, Kubo et al. [Kubo et al. 2020] distinguish multiple
copies printed with different infill structures by measuring their
vibration characteristics. However, while these methods can store
identifiers, they do not allow users to store information specifi-
cally defined by the user, such as custom texts or metadata, in the
tag. AnisoTag [Ma et al. 2023] increases the tags’ data capacity by
combining different print textures.

To store information, AirCode [Li et al. 2017], LayerCode [Maia
et al. 2019], and InfraStructs [Willis and Wilson 2013] embed bar-
codes and QR codes in the form of air gaps or lines ("physical bits")
within the objects. Since such codes store arrays of characters or
digits, they can be used to embed texts or metadata within the
object. StructCode similarly embeds information into the object but
accomplishes this by leveraging existing structures that are already
part of the object.

2.3 Complexity of Tagging Approach:
Fabrication, Detection

To embed unobtrusive tags that store information into objects, exist-
ing methods require specialized fabrication equipment or additional
post-processing steps. For instance, LayerCodes [Maia et al. 2019]
require a custom modification to a 3D printer and a special NIR
resin. AirCodes [Li et al. 2017] require that objects are printed in
two parts and combined manually after washing away the sup-
port material. By contrast, our method leverages the standard laser
cutting process and requires no modification to the hardware and
materials, nor does it require post-processing.

Another important consideration is the availability and complex-
ity of the detection equipment. For example, InfraStructs [Willis and
Wilson 2013] employs a large and costly terahertz scanner, which
is not readily available to consumers. AirCodes [Li et al. 2017] use a
camera and projector setup that are calibrated to each other, which
takes time to set up and image the tag. InfraredTags [Dogan et al.
2022b,c], which uses infrared-absorbing and -reflecting filaments

SCF ’23, October 8–10, 2023, New York City, NY, USA Dogan, et al.

to embed the tags, requires near-infrared (NIR) cameras for detec-
tion. BrightMarkers [Dogan et al. 2023a] uses NIR cameras to detect
embedded infrared-fluorescent markers. InfoPrint [Jiang et al. 2021]
uses a thermal camera to capture patterns embedded into objects.
AnisoTag [Ma et al. 2023] needs the object to be manually swiped
using a collimated laser beam and photoresistors, making it difficult
to integrate it with users’ existing devices. Our work only requires
a conventional mobile phone camera to read the tags.

3 EMBEDDING DATA IN STRUCTCODES
In this section, we discuss how to physically embed the code into
existing laser-cut structures and which encoding scheme we use
for StructCodes. Our goal is to be able to store custom text (e.g.,
sentences or website URLs).

3.1 Identifying Features Suitable for
StructCodes

To better understand how to embed information in laser-cut ob-
jects’ artifacts, we surveyed what joints are used in their structure
and which of these are suitable to be leveraged as a StructCode.
We considered the top 100 laser cutting projects on the popular
online repository Instructables1 and classified the identified joints
in objects. If an object contained more than one joint type, we took
into account all of them.

In total, 58% of projects had at least one type of joint. We found
four main types of joints contained in the laser-cut objects: finger
joints (26%), mortise and tenon joints (16%), slot joints (8%), and
living hinges (8%). We count living hinges as a type of joint be-
cause under joints, we consider any connection between two planes
in the laser-cut model. These joint types can also be commonly
found in the research community, e.g., finger joints in Enclosed [We-
ichel et al. 2013], CutCAD [Heller et al. 2018], and Fresh Press Mod-
eler [Chen and Sass 2016], slot joints in FlatFitFab [McCrae et al.
2014], SketchChair [Saul et al. 2010], and Planar Pieces [Schwartzburg
and Pauly 2013].

Out of these four joint types, we identify finger joints and liv-
ing hinges as most suitable for illustrating the concept of Struct-
Codes. Both contain repeating elements, i.e., finger joints have
individual fingers repeated along the edges of a plate and living
hinges are made up of repeated individual lines. They are both on
the outside surface of the object, i.e., visible to the camera. Living
hinges form a well-defined shape that can be tightly enclosed by a
bounding rectangle. While finger joints can also be applied to non-
rectangular parts, they are most common on rectangular shapes
(73.1% of the joint projects had joints on rectangular plates). Both
structures offer large encoding capacity; particularly, living hinges
have many line cuts that could be used as bits.

3.2 Structural Embedding of Data Bits
As shown in Figure 3, the identified structures typically contain
material interleaved with cuts, i.e., gaps. For instance, in finger
joints, the fingers are interleaved with cut outs that match the
fingers of the neighboring plate, and in living hinges, the sheet is
cut at specific distances to make the material bendable.

1https://www.instructables.com/

Figure 3: General design of (a) finger joints and (b) living
hinges. To embed bits, we resize both the fingers and gaps
in the finger joints, but only the links in the living hinges.

To encode a message, we can either vary the length of the mate-
rial (fingers of joints or links of hinges) or the length of the gaps
between the fingers or between the links. Below we outline how
we embed the codes for each of the two structural element types.

Finger joints. To embed StructCodes into finger joints, we modify
both the widths of the individual fingers and the widths of the gaps
between the fingers, as labeled in Figure 3a (i.e., 𝑑1, 𝑑2, 𝑑3, ...). We
did not consider modifying the depth of the fingers because the
depth has to be the same as the sheet thickness to ensure properly
interlocking plates. To maintain the structural integrity of the joints,
modifications to the widths of the elements (i.e., fingers or gaps)
should be minimized to be as close to the original width as possible
while being distinguishable by the camera and distributing evenly
over the plate length (see Section 6.1).

Living hinges. There are two ways to embed StructCodes into
living hinges, either bymodifying the size of the individual links, the
widths of the hinge gaps (i.e., the vertical cuts between the links), or
both as shown in Figure 3b. To ensure that the hinge can be bent into
the desired curved configuration after laser cutting, the links have
to be vertically aligned. Therefore, we only modify the lengths of
the links. Furthermore, since the links are typically shorter than the
gaps, they are less prone to warping when comparing the lengths
against each other and thus more suitable for our purposes. This
is because the links are situated in a smaller local region, which
allows the projection to the image plane to maintain the ratio of
distances [Maia et al. 2019]. To ensure the structural integrity, we
chose lengths that are as close to the original as possible while
being distinguishable by the camera (see Section 6.2).

3.3 Encoding Scheme
StructCode employs a base 3 (ternary) encoding scheme2, i.e., it
uses the bits 0, 1, and 2. This is represented in the physical code
as a narrower element ("0"), a medium element ("1"), and a wider
element ("2"). Four elements, i.e., four bits, represent one character.
The different combinations of element widths that make up the
four bits can generate up to 81 different variations, which allows to
embed 81 different character types, including 62 alphanumeric char-
acters and 18 special characters for strings that can include URLs.
The remaining bit combination is used as the start/end sequence,
which is asymmetric ("0120"). This allows us to identify where the
code starts and thus helps to find the location in the captured image
where we need to begin decoding. In addition, since the start/end
2In ternary logic, the digits are called trits (trinary digit). However, for familiarity, we
use the term bits in the paper although it is normally used for the binary system.

https://www.instructables.com/

StructCode: Leveraging Fabrication Artifacts to Store Data in Laser-Cut Objects SCF ’23, October 8–10, 2023, New York City, NY, USA

Figure 4: Workflow for encoding and decoding information. (a) After the tool highlights the compatible structures, the user
selects the hinge and encodes "Red Oak". (b) They use the StructCode mobile application to decode the message.

sequence contains the 0, 1, and 2 bits, it makes it easier for us to
detect the widths of the narrow, medium, and wide elements. We
chose the base 3 encoding scheme rather than a base 2 scheme (only
0 and 1, such as in conventional barcodes) as it allows us to increase
the amount of information we can embed in the same number of
elements. We did not go up to base 4 or higher in order not to
sacrifice subtlety (Section 9). If a bit string is relatively short and
the plate or hinge has a large area, our tool automatically repeats
the string throughout the structure to achieve a more even look.

Finger joints. The bit sequence is encoded in a circular fashion
beginning at one of the four corners of a rectangular plate so that it
covers its whole perimeter. When investigating the average number
of joints used in rectangular plates on Instructables, we found that
the ones that have joints on all four sides had on average a total of
50.3 fingers and gaps (std=33.6). By varying both the finger and the
gap, this allows us to embed 7 characters with a base 2 scheme, or
12 characters with a base 3 scheme, a capacity sufficient to store
longer URLs using shortened URLs (similar to regular QR codes).
For instance, t.ly/aNPf with 9 characters is the shorted version of a
39-character kyub link to a 3D model.

Living hinges. A row of columns is encoded from left to right,
and an individual column goes top to bottom. As an example, in
Figure 3b, the first column is read from top to bottom (𝑑1,1, 𝑑1,2,
𝑑1,3), and then the second column is read (𝑑2,1, 𝑑2,2, ...). We found
that the average number of links in two-dimensional hinges from
the Instructables dataset is 85.7 (std=43.1), excluding the hinges that
are completely circular and thus would not fit in a single camera
frame. This allows for a data capacity of 21 characters using our
base 3 scheme. Thus, we conclude that compared to finger joints,
living hinges usually fit longer StructCodes because they have more
repeating elements.

4 END-TO-ENDWORKFLOW
We next describe how a user can embed StructCodes into their laser
cut object. Our workflow is designed to work with laser-cut objects
made in the 3D editor kyub [Baudisch et al. 2019] or 2Dmodels (.svg)
from other sources imported into kyub using assembler3 [Roumen
et al. 2021]. Users import the project from kyub as a 2D file into
our Web-based tool to embed StructCodes in it. After fabricating

the object in the laser cutter, the user can detect the code using our
mobile application.

4.1 User Interface for Embedding StructCodes
Once the user has imported their kyub object into our tool, they click
on the Identify compatible structures button in the tool (Figure 4),
which marks the jointed plates and hinges that allow embedding
codes. In our walkthrough, the user is making a box and the Struct-
Code tool shows that the two rectangular plates of the box and
the one with the living hinge can be used to embed a code. It also
reminds the designer to choose a structure that is facing towards
the user when they take a photo of it. Since the hinge pattern on
the top part of the object is most visible, the designer chooses it for
the StructCode.

Once we select one of the structures, the tool shows how many
characters can be embedded in it based on its number of joints or
lines in the hinge pattern, e.g., that the selected hinge can embed
up to 15 characters in it. In this example, we want to embed a
StructCode that can later help us identify which material the object
was laser cut from, i.e., red oak plywood. We type in "Red Oak"
which is within our character limit (Figure 4a) and as a result, the
tool modifies the hinge cuts. After embedding this code, users have
the option to also add more codes into the other structural elements
of the object. In our case, we do not need to embed additional
messages, so we leave all other structural elements as they are.

Finally, the user exports the laser-cut design with the embedded
StructCodes as an SVG file and send it to the laser cutter’s software.
After fabrication, the user assembles the parts using the instructions
generated by kyub. Our tool preserves the plate numbers from kyub
to facilitate the assembly process.

4.2 Mobile Interface for Reading StructCodes
The StructCode mobile application is used for decoding data embed-
ded in objects. To do so, the user points their phone at the structure
as shown in Figure 4b. The mobile application automatically starts
capturing images and processes them to decode the message. After
enough images are taken to ensure correct decoding, the app dis-
plays the encoded message, i.e., in our case "Red Oak". The decoded
information can be used to augment various mobile experiences,
which are illustrated in Section 5.

http://t.ly/aNPf

SCF ’23, October 8–10, 2023, New York City, NY, USA Dogan, et al.

Figure 5: (a) Document folders with encoded personal labels, which the user views in AR to retrieve the right one. (b, c) Status
updates inform the user about when the plant needs watering.

5 APPLICATIONS
We demonstrate how StructCodes enriches object interactions with
data, including identifiers for labels, object context, such as instruc-
tions, as well as overlaid media, such as narration.

5.1 Embedding Identifiers for Static or
Dynamic Labels

Users can add identifiers to objects which allow static or dynamic
labels for the specific use cases of the objects.

Static labels. As shown in Figure 5a, a set of office folders contain
various personal documents (e.g., personal finances or visa docu-
mentation) that the owner would rather not have visibly shown.
The user embeds a StructCode into the finger joints of the folder’s
front plates. Thus, the information is only visible to the user in AR
and otherwise the folder looks unlabeled. For the most sensitive
tags, the mapping of code to label can be encrypted and available
to that user only.

Dynamic labels. The embedded identifiers can be also used for
dynamic labels, i.e., status updates. In the example shown in Fig-
ure 5b, the designer is creating a plant pot that lets the user pull up
an online dashboard to keep track of the plant’s health (i.e., water-
ing, trimming the branches, fertilizing). The pot has an identifier
embedded into its living hinges as StructCodes. When the designer
leaves for vacation, they ask their friends to take care of the plants.
StructCode allows the friend to identify the plant and retrieve its
recent status, e.g., that it needs to be watered today.

Figure 6: Providing context. (a) The user can access the fabri-
cation files of the furniture. (b) Running low on cookies, the
user adds a new batch to the online shopping cart through
the embedded reorder link.

5.2 Embedding Context: Resources and
Instructions

StructCodes allow embedding references to the object’s context,
such as accessing the digital model, on-demand renewal, and (dis)-
assembly instructions.

Accessing the digital model. As shown in Figure 6a, the laser-cut
chair contains a shortened link to its kyub page. Users who see the
chair and like the design can scan the StructCode to download its
files online and make a copy for themselves.

On-demand renewal. As shown in Figure 6b, the user reorders
cookies by simply capturing its container, which has the reorder
link encoded as a StructCode. This allows users to access and renew
supplies whenever needed.

Assembly / disassembly instructions. Furniture manufacturers
such as IKEA provide not only the assembly instructions for their
products, but also the disassembly instructions to improve recycling
for better sustainability [Allen 2021]. However, users frequently
misplace instruction manuals over time. Similarly, for fabricated
objects, users may struggle to locate the related instructions that
originally camewith the digital file. As shown in Figure 7, the owner
retrieves the disassembly manual through the StructCode when
they need to discard of the piece, or transport and reconstruct it
elsewhere.

While we showed the use case of StructCodes for linking disas-
sembly instructions, our method can also be integrated into existing

Figure 7: Disassembly instructions are linked to the shelf in
case the user needs to take it apart for recycling or transport.

StructCode: Leveraging Fabrication Artifacts to Store Data in Laser-Cut Objects SCF ’23, October 8–10, 2023, New York City, NY, USA

systems for helping users with the assembly of laser-cut objects [Ab-
dullah et al. 2021; Park and Baudisch 2022]. For instance, the part
numbers could be embedded into individual plates so that our app
guides the user to pick the right one in each step.

5.3 Embedding Overlaid Media
StructCodes enable users to overlay objects with related media such
as narrative videos or illustrations using AR.

Narrative media. As shown in Figure 8a, StructCode links a video
of the original artist narrating their artwork. Using StructCode,
students quickly set up a temporary gallery by laser cutting wooden
frames for their own works. Visitors can use their phones to view
the art in AR, which overlays the video on the related artwork. The
app can tailor the content and duration to the individual viewer’s
level of interest.

Figure 8: Overlaying media. (a) In an exhibit, visitors use
an AR app to view narrative videos by the artists. (b) The
crocodile has StructCodes that describe what part they are
located on, which is used for educational applications.

Illustrative sublabels. Individual parts of an object can have dif-
ferent functions. StructCodes are used to associate relevant infor-
mation with each part using illustrative sublabels. One example
of this is the educational toy model shown in Figure 8b that has
different sublabels embedded into different limbs of the crocodile.
Thus, users access educational materials for each limb. This allows
teachers to interactively introduce new concepts in classrooms. For
such use cases, we expect that users are made aware of the existence
of StructCodes through the toy description or manual.

6 DETECTION OF STRUCTCODES
The image processing pipeline of StructCodes is implemented us-
ing OpenCV [Bradski 2000]. As shown in Figure 9, StructCodes are
detected by locating the structure of interest, detecting the modifi-
cations in it to extract the bits, and finally decoding the message.

This section describes the decoding pipeline for finger joints
and living hinges, which use slightly different image processing
techniques. If the user selects what type of feature to decode when
launching the application, StructCodes can run the corresponding
pipeline directly on the phone’s processor. However, running both
pipelines at the same time requires higher processing power and is
thus recommended to run on a server, which in our applications
takes less than a second. We implemented both standalone phone
detection for simpler applications and the server-based approach
for other use cases for which joints and hinges are expected to be
identified at the same time.

6.1 Detection of Finger Joints
We explain the steps to read the code from the raw image of the
finger joints as shown in Figure 9a.

Isolate the plate of interest. StructCode’s finger joint detection
pipeline starts by grouping the pixels using k-means based on each
pixel’s HSV values. This creates multiple black and white masks
such that a plate of interest is white in at least one of the masks. It
runs this process for k=3, 6, 10. It creates a different mask for each
k, k (i.e., a total of 3+6+10 masks). The algorithm then applies a
morphological opening on each mask to disconnect the plates from
the background. It takes the larger rectangles found over all masks
(with a padding of 25% to account for any error margin) and applies
a 4-point perspective transformation to isolate the plate.

Correct for perspective. The next step in the pipeline applies
Gaussian blur to reduce noise and use Otsu’s thresholding to turn
the gaps between fingers into contours. For each edge of a plate,
it samples points on the gaps’ contours, and draws a line of best
fit through the points closest to the center, rather than using the
details closer to the sides. This allows the the algorithm to segment
the interior plate even if the background has a similar color. It uses
these four fitted lines to find the bounding quadrilateral for the
plate interior. It then applies another perspective warp that maps
the four corners of the quadrilateral to an axis-aligned rectangle.
And finally, it slightly extends the bounding rectangle to include
the fingers but exclude the background.

Decode the message. The gaps of interest are the white rectangles
in the final image, and the width of the fingers can be calculated
by the distance between consecutive gaps along each edge. The
pipeline then runs k-means with k=3 to classify the gap and finger
lengths as 0, 1, or 2 bits. It converts the entire ternary string into
characters by grouping bits into blocks of 4. To identify the correct
reading direction irrespective of the plate orientation, the start/end
sequence, which has an asymmetric order (i.e., "0120", see Section 3)
is detected from one of the corners and used as an anchor.

6.2 Detection of Living Hinges
Wenext explain the pipeline to detect living hinges, as demonstrated
in Figure 9b.

Identify individual hinge gaps. The first step of the pipeline uses
adaptive thresholding to turn the image into black and white. A
morphological opening and closing are applied to eliminate small
isolated patches of black pixel noise. Because the living hinge con-
sists of many thin and long gaps (i.e., the cuts between links) that
are parallel and close together, the algorithm searches for thin
rectangles in the image. It measures each contour’s similarity to
a rectangle by comparing its enclosed area to the minimum-area
rectangle that contains it.

Group gaps to isolate the hinge. The next step groups rectangles
based on proximity, as living hinges consist of many parallel nearby
gaps with similar dimensions and orientation. For this, it creates a
graph with edges between similar rectangles and find the bounding
boxes around the largest connected components. For each bounding
box, it applies a 4-point perspective transform and crop out the rest
so that the hinge is axis-aligned and takes up the whole image.

SCF ’23, October 8–10, 2023, New York City, NY, USA Dogan, et al.

Figure 9: Image processing steps for (a) finger joints and (b) living hinges.

Sort the gaps. This step removes noise due to the side joints via
morphological opening, resizes the image to thicken the rectangular
gaps, and iterates through the gaps to assign them to rows and
columns by their coordinates.

Decode the message. Since every row of gaps is determined, the
final step calculates the position and lengths of the links (i.e., the
bits) by measuring the distances between the gaps within each
row. It scans the links from top to bottom, where it groups each
link together with the previous link that has approximately equal
x-coordinate. StructCode runs k-means with k=3 to classify each
link length as a 0, 1, or 2 bit. The entire ternary string is then
converted into characters by grouping bits into blocks of 4. The
correct reading direction is determined by identifying the start/end
sequence “0120”.

6.3 Evaluation of the Detection Pipelines
We evaluated what the smallest detectable length difference Δ𝑑 is
between individual bit categories (0, 1, or 2) when processing the
camera images with our detection pipeline. If 0 is represented by
distance 𝑑 , then 1 is represented by 𝑑 + Δ𝑑 , and 2 is represented
by 𝑑 + 2Δ𝑑 . Our goal is to only use the smallest possible length
difference Δ𝑑 to maintain the mechanical integrity of the object.

The smallest possible length difference Δ𝑑 is related to the length
of the captured joint plate 𝑤𝑝𝑙𝑎𝑡𝑒 and the camera distance since
larger plates require the the camera to be held further to capture
all features (joints or hinge links), which results in them appearing
smaller in the image. Further, in certain applications, the user may
want to identify more than one object at the same time and hold the
phone further away, thus differences may become even subtler. We
formalize this relationship asΔ𝑑𝑚𝑖𝑛 =

𝑤𝑝𝑙𝑎𝑡𝑒

𝛼 , where𝛼 is the camera
distance scaling factor and 𝑤𝑝𝑙𝑎𝑡𝑒 is the longest plate dimension
or the longest dimension in the bounding box around living hinge
regions.

To obtain a conservative bound for 𝛼 , we conduct the following
test in our workshop (80-150 lux), which is in line with regular
indoor lighting conditions [Observatory 2016]. We first cut multiple

joint plates of a fixed size (15cm x 10cm, from the folder application
in Section 5.1) with 6 different 𝛼 values with increments of 5 (from
𝛼 = 75 to 𝛼 = 100), which corresponds to a range of 1.5-2mm for Δ𝑑 .
Next, we captured the plate with a phone (12.2MP on Pixel 2) and
downscaled the images to 2048x1536 for fast processing. To ensure
that at least two objects can be identified from a single image as
shown in the use cases, we held the camera far enough (45cm) so
that at least three plates can fit into the frame.

We then ran our image processing pipeline on the resulting
images and found that it was able to distinguish between bits with
𝛼 <= 80. Thus, with the given 𝛼 , a 15x10 cm plate requires a
difference Δ𝑑 = 1.88 mm, allowing up to 26 fingers, which can
store up to 14 characters. By contrast, a larger plate of 20x20 cm (60
fingers) can store up to 31 characters but requires a larger difference
Δ𝑑 = 2.5 mm since the camera has to be held further away.

We repeated this experiment for living hinges. We first cut mul-
tiple copies of a hinge (5cm x 3.7cm, the model from Section 4.1),
with 6 different 𝛼 values with increments of 5 (from 𝛼 = 25 to
𝛼 = 50), which corresponds to a range of 1-2mm for Δ𝑑 . We held
the camera at a distance far enough (20.7cm) so that at least three
of these hinges can be detected from the captured shot.

The processing pipeline managed to distinguish between bits
with 𝛼 <= 45. Thus, with the given 𝛼 , a hinge of a size of 5 cm x 3.7
cm requires a difference Δ𝑑 = 1.11 mm, resulting in 72 hinge cuts
in the area, which can store up to 9 characters. In contrast, a larger
hinge of 10 cm x 7.4 cm (193 cuts) can store up to 36 characters but
requires a larger difference Δ𝑑 = 2.22 mm since the camera has to
be held further away.

6.3.1 Evaluation of the viewing angle: Using the above results, we
evaluated the maximum camera capture angle at which the message
can still be decoded relative to the plate normal. To do this, we fixed
the model with finger joints on a surface and rotated the camera
around the plate of interest until the code is no longer detectable,
while keeping track of the angle using a protractor attached onto
the surface. We did this for three different codes (Figure 5) and three
different backgrounds (black, white, wood). The maximum viewing

StructCode: Leveraging Fabrication Artifacts to Store Data in Laser-Cut Objects SCF ’23, October 8–10, 2023, New York City, NY, USA

angle was 25.28◦ (std=2.81) across the nine resulting conditions.
When repeated with the living hinge samples, we found that the
maximum angle was 37.19◦ (std=4.52) around the axis perpendicular
to the hinge gaps (y-axis in Figure 9b), and 19.08◦ (std=2.95) around
the axis along the gaps (x-axis) across the nine conditions. The
reason the second value is smaller is that due to the curvature, the
outermost gaps become more easily occluded with deviations away
from the center.

6.3.2 Evaluation of hinge curvature. For reliable detection, we need
to ensure that different bits can be correctly distinguished even
though their lengths may be distorted as a result of hinge curvature.
For instance, the more curved an (outward) hinge is, the more likely
it is that a 0 bit at the center of the hinge appears longer than a 0 bit
at the edge of the hinge. Figure 10a shows an exaggerated case of
this where the camera is very close the the hinge (4cm). As length is
the differentiating factor between bits, this distortion creates a risk
of incorrect detection (i.e., mistaking a 0 bit for a 1 bit as a result of
length distortion). Based on the pinhole camera model [Sturm 2014],
we formalize the condition to avoid this risk using the expression
Δ𝑑 > 𝑑

[
𝑑𝑖𝑠𝑡𝑒𝑑𝑔𝑒

𝑑𝑖𝑠𝑡𝑐𝑒𝑛𝑡𝑒𝑟
− 1

]
, where 𝑑𝑖𝑠𝑡𝑐𝑒𝑛𝑡𝑒𝑟 is the camera distance

from the bit at the center and 𝑑𝑖𝑠𝑡𝑒𝑑𝑔𝑒 is the camera distance from
the bit at the edge. The difference between these distance values
is proportional to the curvature. However, since the camera is
sufficiently far from the object, we have 𝑑𝑖𝑠𝑡𝑐𝑒𝑛𝑡𝑒𝑟 ≈ 𝑑𝑖𝑠𝑡𝑒𝑑𝑔𝑒 . Thus,
in practice the right-hand term is smaller than the Δ𝑑 values used.

For instance, for the typical viewing distance of the model eval-
uated in Section 6.3, we need Δ𝑑 > 2.1𝑚𝑚

[21.3𝑐𝑚
20.7𝑐𝑚 − 1

]
≈ 0.06𝑚𝑚,

which is satisfied since the Δ𝑑 used is 1.11 mm. This gives enough
legroom to ensure correct detection in various conditions, such
as different angles as mentioned in the earlier section. Another
example is conical hinges (Figure 10b), here the lines on which
the hinge cuts lie have different angles. The legroom allows the
detection of the correct measurements, however, the maximum
viewing angles reported in Section 6.3.1 are reduced by the angle
difference between ®𝑣𝑐𝑒𝑛𝑡𝑒𝑟 and ®𝑣𝑒𝑑𝑔𝑒 on which the central and the
edge cuts lie.

Figure 10: Curvature of living hinges. (a) As bit lengths may
be distorted due to curvature, StructCode encodes themwith
sufficient tolerance to ensure correct detection. (b) Struct-
Codes can be encoded on various shapes, e.g., conical hinges.

Figure 11: Mechanical evaluation of StructCodes: (a) Com-
pressive strength of finger joints and (b) bending of hinges.

7 MECHANICAL EVALUATION
When embedding StructCodes, the individual elements of mechan-
ical structures are slightly modified, i.e., the width of the finger
joints and the distance between the living hinge cuts are adjusted
by multiples of Δ𝑑 . To evaluate how much this change affects the
mechanical integrity, we conducted several tests with modified
finger joints and living hinges.

7.1 Compression Evaluation of Finger Joints
To compare how the addition of StructCodes affects sturdiness,
we compared the ultimate compressive strength of box structures
before and after embedding the code (i.e., unmodified vs. modified).

Experiment setup. We evaluated two different box sizes because
each size results in a different resizing difference Δ𝑑 based on the
camera scaling factor 𝛼 = 80 for finger joints as explained in Sec-
tion 6.3. The smaller box, which can carry up to 5 characters, had a
plate size of 5cm x 5cm and required a Δ𝑑 of 0.625mm. The larger
box, which can carry up to 10 characters, had a plate size of 12cm
x 12cm and required a Δ𝑑 of 1.5mm. The dimensions for the large
box were chosen since they represent the largest size that can fit
into the measurement machine. We laser cut 4 unmodified and
4 modified boxes of each box size (total of 16 boxes) from 3mm
birch plywood sheets. The messages embedded in the modified
boxes were produced using a random string generator. Similar to
the technical evaluation for kyub [Baudisch et al. 2019], we used a
common low-cost material to obtain a conservative lower bound
for the sturdiness of the tested objects. All boxes were held together
solely press fitting their joints together, i.e., without glue.

Experiment procedure. We used an Instron universal testing ma-
chine (UTM) as shown in Figure 11a. We placed the modified boxes
such that the side with the StructCode faced upward. The Instron
increased the compression force on the box and we measured the
ultimate compression strength to the point where the box failed
under crush loading. The ultimate compression strength represents
the maximum stress the structure can sustain.

Results. We found that the width modification of joints required
to embed StructCodes did not strongly affect the sturdiness when
compared to the values reported in previous literature. In their
tests with kyub objects, Baudisch et al. [Baudisch et al. 2019] have
reported that (unmodified) objects were still intact when they ex-
ceeded the 500kg (4,903 N) value range of their measuring device.
We were able to confirm this as shown in Table 2. Both unmodified

SCF ’23, October 8–10, 2023, New York City, NY, USA Dogan, et al.

Table 2: Average peak load comparison of the finger joints.

Unmodified
Modified with
StructCode

Relative change

5 cm 15,939.7 N
(std=621)

13,630.6 N
(std=641)

Decrease by 14.5%

12 cm 12,578.6 N
(std=2,020)

12,599.3 N
(std=1,760)

Increase by 0.16%

and modified objects go well beyond the reported 4,903 N value.
Even though the peak load the box can handle decreased on average
by 14.5% for the 5cm box and increased on average by 0.16% for the
12cm box after modifying the joints, the force that each of these
boxes can withstand is still larger than what is required of most
objects used in daily life. The high standard deviation, specifically
for the large boxes, is likely due to the fact that there is a large
variation in the composition of plywood sheets even though they
all came from the same batch.

7.2 Bending Evaluation of Living Hinges
To evaluate if the introduction of StructCodes into living hinges
changes their flexibility, we measured up to what angle the living
hinge can bend before fracturing and compared the results for both
modified and unmodified living hinges.

Experiment setup. Similar to the setup from Section 7.1, we cre-
ated 4 pairs of hinges based on the camera scaling factor for living
hinges 𝛼 = 45, which was explained in Section 6.3. We repeated
this for hinges of two sizes: a smaller one that can carry 10 char-
acters (4.7cm x 3.64cm, Δ𝑑 = 1.04mm) and a larger one that can
carry 50 characters (12.2cm x 9.6cm, Δ𝑑 = 2.71mm). We laser cut
the 4 unmodified and 4 modified hinges of each size (16 hinges in
total) from 3mm birch plywood sheets. The messages embedded in
the modified ones were produced using a random string generator.
While different hinge designs may exhibit different flexibility [Fen-
ner 2012], we use the default pattern generated by kyub as this is
the tool we used for fabricating our application samples.

Experiment procedure. To evaluate the bending angle, we bent
the living hinge pattern either up to 180◦ (maximum) or up to the
point where it started cracking, and then read the corresponding
maximum angle from a protractor as shown in Figure 11b.

Results. For the larger hinge, we found that both the unmodified
and modified hinge were able to bend to 180◦ (Table 3). Thus, the
change did not impact the performance. This is likely because the
cut distance is not a main factor impacting the maximum hinge
bend angle, which is rather directly linked to the the sheet thickness
and the number of links in series [Fenner 2012]. For the smaller
hinge, the unmodified hinge was also able to bend to the maximum
of 180◦, whereas the modified hinge was still able to bend to 175◦

Table 3: Average bend angle of the living hinges.

Unmodified
Modified with
StructCode

Relative change

smaller 180◦ 175◦ (std=5) Decrease by 2.8%
larger 180◦ 180◦ No change

(i.e., a decrease only 2.8% after the insertion of the code). We believe
this should not affect the use of hinges as they are typically bent to
90◦ for most objects (see Section 9).

The above evaluation demonstrated that the addition of Struct-
Codes preserves the large compression strength of laser-cut objects
held together with joints and curvatures achieved via hinges. How-
ever, more longitudinal tests might be needed to further examine
the joints’ usage in diverse applications where, for instance, the
effect of shearing (i.e., when the direction of the force is parallel to
the plane of the object) is more important than the effect of com-
pression. Similarly, while the hinge applications presented were for
static objects, further analysis could be conducted to determine the
long-term impact of repeated bending on hinges with StructCodes.

8 SOFTWARE IMPLEMENTATION
Our software tool for embedding StructCodes is Web-based and
uses JavaScript as well as the Paper.js canvas library.

Extracting laser-cut plates from SVG. To extract the laser-cut
structures from the user’s kyub design file (.svg), our software first
parses through its layers that contain the individual path segments
of the drawing. For each plate, our tool utilizes the annotations in
the kyub file to create a data structure instance that contains the ID
of the plate and the IDs of interlocking plates on the plate’s sides.

Identifying structures in each plate. Once the plates are extracted
from the SVG file, the software interface identifies the finger joints
and living hinges in each plate using our algorithm and adds the
line segments that represent them to the data structure. To identify
joints, it detects parallel line segments whose endpoints match in
either the x- or y-axis and stores these segments in an array inside
the data structure. To identify hinges, it detects groups of adjacent
parallel lines with tiny distances between them. For hinges, once
the last line is found, a bounding box is created to encompass all
segments within that hinge.

Converting text into bit sequences. The user-inputted characters
are transformed into 4-bit, base 3 sequences to form a bit string
according to a pre-defined dictionary.

Modifying structures to embed bits. The fingers joints and living
hinges are then manipulated to encode the computed bit sequence
in the following manner:

For finger joints, we first compute Δ𝑑𝑚𝑖𝑛 based on the formula
described in Section 6.3 (Δ𝑑𝑚𝑖𝑛 =

𝑤𝑝𝑙𝑎𝑡𝑒

𝛼) for the selected plate.
While modifying the fingers and gaps of the joints, we readjust
their widths to ensure that the joints cover the whole side of the
plate based on the computed Δ𝑑𝑚𝑖𝑛 value as well as the number
of 0s, 1s, and 2s needed for the specific message. We modify the
widths by shifting each parallel line from the line before it by the
required calculated difference, and this shifting continues along
each of the sides in a counter-clockwise manner until complete.
When a side is done, the neighboring plate and its side are also
shifted with the corresponding bit subarray to ensure interlocking.

For living hinges, we similarly first compute Δ𝑑𝑚𝑖𝑛 based on the
formula described in Section 6.3 (Δ𝑑𝑚𝑖𝑛 =

𝑤ℎ𝑖𝑛𝑔𝑒

𝛼) for the hinge

StructCode: Leveraging Fabrication Artifacts to Store Data in Laser-Cut Objects SCF ’23, October 8–10, 2023, New York City, NY, USA

selected by the user, and use this value to find the lengths cor-
responding to the different bits. These length values are used to
modify the endpoints of the two adjacent line segments that repre-
sent a gap between hinge cuts.

9 DISCUSSION
In the next section, we discuss insights gained from our work,
acknowledge its limitations, and propose future research.

Aesthetics vs. code capacity. Even though varying structural ele-
ments keeps the surface and the main geometry of the object intact,
the varying patterns may come across as unfamiliar or less smooth
to users that are used to the standard joint or hinge patterns. Thus,
similar to FoolProofJoint [Park and Baudisch 2022], which varies
the joints to facilitate assembly, the use of StructCodes comes at an
aesthetic cost based on the user’s familiarity and experience with
these patterns. StructCode aims to minimize this by choosing Δ𝑑
values as small as possible while also ensuring machine-readability.
Future work can explore how to optimize the look of joints for
being completely unnoticeable to humans by aiming to go under
the Just Noticeable Difference, i.e., the minimum level a stimulus
that needs to be changed for humans to perceive it [Hecht 1924].
Psychologists show this difference is proportional to the original
length [Boring 1942]. Therefore, distinguishing between two rect-
angles (e.g., joints) with different lengths is more difficult when
their average length increases while the difference between them is
kept constant [Wadhwa 2020].

The current version of StructCode uses a base 3 encoding scheme,
which allows us to embed a variety of characters sufficient to rep-
resent, e.g., a URL. Other numeral systems (e.g., base 5) can embed
more characters with fewer bits, but they require more variation
in the joint lengths. Thus, the difference between individual joints
may be more visible and have a stronger impact on the object in-
tegrity and look. A future version of StructCode can offer multiple
encoding schemes and allow users to decide on the best trade-off
between data capacity, subtlety, and mechanical performance.

Error correction. Error correction codes (ECCs) such as Reed-
Solomon [Reed and Solomon 1960] or Hamming code [Hamming
1950] could be added to StructCodes to further increase detection
robustness. By adding redundancy, these may help detect and cor-
rect errors that may occur in particularly noisy or blurry images.
However, this comes at the expense of reduced code capacity.

The effect of post-hoc polishing. After laser cutting an object, some
users prefer smoothing the finger joints depending on intended use
and time availability. However, sanding finger joints may impact
the size of the detected joints. We evaluated how much sanding
our image processing pipeline can endure for different wood mate-
rials, i.e., birch plywood, walnut, and medium-density fiberboard
(MDF). We cut the same sample with these materials and sanded
them with sandpaper of grit sizes 1000, 600, 220, and 110 (fine to
coarse), 30 passes for each. We could decode each sample before
sanding. For birch plywood and walnut, we found that sanding with
grit size 1000 and 600 preserved decodability. For MDF, only grit
size 1000 preserved decodability. This is likely because plywood
sheets consist of multiple stacks of veneers, one of which naturally
has a darker color that remains intact even after sanding. In the

future, our detection algorithm could be further optimized to in-
crease recognition under tougher conditions by enhancing contrast
using methods such as CLAHE [Yadav et al. 2014]. Future research
may also consider using specialized cameras [Dogan et al. 2022b]
for cases where fabrication artifacts like joints are intentionally
occluded by the designer.

Extending StructCode to other types of shapes and objects. Our ini-
tial survey showed that finger joints and living hinges are most suit-
able for StructCodes. We therefore optimized our image processing
pipeline to detect these structures. However, the StructCode concept
is not limited to these. We plan to embed codes into more freeform
shapes in the future, such as joints placed along circular plates.
Future work can investigate ways to embed StructCodes into joints
used in other fabrication processes, e.g., stitching in Joinery [Zheng
et al. 2017], 3D printing textiles in DefeXtiles [Forman et al. 2020]
or joints in Hybrid Carpentry [Magrisso et al. 2018], and machining
traditional or modern woodworking joints in Tsugite [Larsson et al.
2020], JigFab [Leen et al. 2019] and MatchSticks [Tian et al. 2018].

10 CONCLUSION
In this paper, we presented StructCode, a technique to embed data
into laser-cut fabrication artifacts. By modifying the patterns of
laser-cut joints while maintaining their functionality, StructCode
enables the embedding of data that can be decoded using a mo-
bile phone camera. We explained the encoding scheme used to
embed data into finger joints and living hinges. We then presented
a software tool for embedding codes into existing 3D models, and
a mobile application to decode them. Our applications illustrated
how fabrication artifacts can be leveraged to augment laser-cut
objects with data such as labels, instructions, and narration. We
explained our image processing pipeline which extracts the data
from camera images. Finally, we evaluated the mechanical integrity
of the fabricated objects to ensure that they are stable after Struct-
Codes are embedded, and discussed how StructCodes can be further
developed to make them fully inconspicuous to humans and more
robust using error correction codes.

This work aims to bring us one step closer to the vision of em-
bedding data for augmented objects as an inherent part of the
fabrication process [Dogan et al. 2022a].

ACKNOWLEDGMENTS
We thank Kristen Palmer, Ishita Bhimavarapu, and Thelonious
Cooper for their help with early prototyping and debugging. We
also thank Ahmad Taka for his help on the videos, and Anna
Roumen for her encouragement and help with brainstorming.

REFERENCES
Muhammad Abdullah, Romeo Sommerfeld, Laurenz Seidel, Jonas Noack, Ran Zhang,

Thijs Roumen, and Patrick Baudisch. 2021. Roadkill: Nesting Laser-Cut Objects for
Fast Assembly. In The 34th Annual ACM Symposium on User Interface Software and
Technology (UIST ’21). Association for Computing Machinery, New York, NY, USA,
972–984. https://doi.org/10.1145/3472749.3474799

Kelly Allen. 2021. IKEA Now Offers Disassembly Instructions to Make Your Moves
So Much Easier. House Beautiful (Feb. 2021). https://www.housebeautiful.com/
lifestyle/a35615293/ikea-disassembly-instructions/

Barbara Ruschel Lorenzoni and Fabio Pinto da Silva. 2021. Bending techniques for flat
materials using cut patterns: a review. Global Journal of Engineering and Technology
Advances 7, 2 (May 2021), 091–102. https://doi.org/10.30574/gjeta.2021.7.2.0070

https://doi.org/10.1145/3472749.3474799
https://www.housebeautiful.com/lifestyle/a35615293/ikea-disassembly-instructions/
https://www.housebeautiful.com/lifestyle/a35615293/ikea-disassembly-instructions/
https://doi.org/10.30574/gjeta.2021.7.2.0070

SCF ’23, October 8–10, 2023, New York City, NY, USA Dogan, et al.

Patrick Baudisch and Stefanie Mueller. 2017. Personal Fabrication. Foundations and
Trends® in Human–Computer Interaction 10, 3–4 (May 2017), 165–293. https:
//doi.org/10.1561/1100000055

Patrick Baudisch, Arthur Silber, Yannis Kommana, Milan Gruner, Ludwig Wall, Kevin
Reuss, Lukas Heilman, Robert Kovacs, Daniel Rechlitz, and Thijs Roumen. 2019.
Kyub: A 3D Editor for Modeling Sturdy Laser-Cut Objects. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. ACM, Glasgow Scotland
Uk, 1–12. https://doi.org/10.1145/3290605.3300796

E. G. Boring. 1942. Sensation and perception in the history of experimental psychology.
Appleton-Century, Oxford, England. Pages: xv, 644.

Gary Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).
Lujie Chen and Lawrence Sass. 2016. Fresh Press Modeler: A generative system for

physically based low fidelity prototyping. Computers & Graphics 54 (Feb. 2016),
157–165. https://doi.org/10.1016/j.cag.2015.07.003

Mustafa Doga Dogan, Patrick Baudisch, Hrvoje Benko, Michael Nebeling, Huaishu
Peng, Valkyrie Savage, and Stefanie Mueller. 2022a. Fabricate It or Render It? Digital
Fabrication vs. Virtual Reality for Creating Objects Instantly. In Extended Abstracts
of the 2022 CHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, 5. https://doi.org/10.1145/3491101.3516510

Mustafa Doga Dogan, Steven Vidal Acevedo Colon, Varnika Sinha, Kaan Akşit, and
Stefanie Mueller. 2021. SensiCut: Material-Aware Laser Cutting Using Speckle
Sensing and Deep Learning. In Proceedings of the 34th Annual ACM Symposium
on User Interface Software and Technology. ACM, Virtual Event USA, 15. https:
//doi.org/10.1145/3472749.3474733

Mustafa Doga Dogan, Faraz Faruqi, Andrew Day Churchill, Kenneth Friedman, Leon
Cheng, Sriram Subramanian, and Stefanie Mueller. 2020. G-ID: Identifying 3D
Prints Using Slicing Parameters. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376202

Mustafa Doga Dogan, Raul Garcia-Martin, Patrick William Haertel, Jamison John
O’Keefe, Ahmad Taka, Akarsh Aurora, Raul Sanchez-Reillo, and Stefanie Mueller.
2023a. BrightMarker: 3D Printed Fluorescent Markers for Object Tracking. In 36th
Annual ACM Symposium on User Interface Software and Technology (UIST ’23). ACM,
San Francisco, CA. https://doi.org/10.1145/3586183

Mustafa Doga Dogan, Alexa F. Siu, Jennifer Healey, Curtis Wigington, Chang Xiao,
and Tong Sun. 2023b. StandARone: Infrared-Watermarked Documents as Portable
Containers of AR Interaction and Personalization. In Extended Abstracts of the 2023
CHI Conference on Human Factors in Computing Systems (CHI EA ’23). Association
for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/
3544549.3585905

Mustafa Doga Dogan, Ahmad Taka, Michael Lu, Yunyi Zhu, Akshat Kumar, Aakar
Gupta, and Stefanie Mueller. 2022b. InfraredTags: Embedding Invisible AR Markers
and Barcodes Using Low-Cost, Infrared-Based 3D Printing and Imaging Tools. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, New Orleans LA USA, 9. https://doi.org/
10.1145/3491102.3501951

Mustafa Doga Dogan, Veerapatr Yotamornsunthorn, Ahmad Taka, Yunyi Zhu, Aakar
Gupta, and StefanieMueller. 2022c. Demonstrating InfraredTags: Decoding Invisible
3D Printed Tags with Convolutional Neural Networks. In Extended Abstracts of
the 2022 CHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, 7. https://doi.org/10.1145/3491101.3519905

Omid Ettehadi, Fraser Anderson, Adam Tindale, and Sowmya Somanath. 2021. Docu-
mented: Embedding Information onto and Retrieving Information from 3D Printed
Objects. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. ACM, Yokohama Japan, 1–11. https://doi.org/10.1145/3411764.3445551

Patrick Fenner. 2012. Lattice Hinge Design Minimum Bend Radius. DefProc. https:
//www.defproc.co.uk/analysis/lattice-hinge-design-minimum-bend-radius/

Jack Forman, Mustafa Doga Dogan, Hamilton Forsythe, and Hiroshi Ishii. 2020. De-
feXtiles: 3D Printing Quasi-Woven Fabric via Under-Extrusion. In Proceedings of
the 33rd Annual ACM Symposium on User Interface Software and Technology. ACM,
Virtual Event USA, 1222–1233. https://doi.org/10.1145/3379337.3415876

Jiayun Fu, Bin Zhu, Weiwei Cui, Song Ge, Yun Wang, Haidong Zhang, He Huang,
Yuanyuan Tang, Dongmei Zhang, and Xiaojing Ma. 2021. Chartem: Reviving Chart
Images with Data Embedding. IEEE Transactions on Visualization and Computer
Graphics 27, 02 (Feb. 2021), 337–346. https://doi.org/10.1109/TVCG.2020.3030351
Publisher: IEEE Computer Society.

Christopher Getschmann and Florian Echtler. 2021. Seedmarkers: Embeddable Markers
for Physical Objects. In Proceedings of the Fifteenth International Conference on
Tangible, Embedded, and Embodied Interaction (TEI ’21). Association for Computing
Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3430524.3440645

R. W. Hamming. 1950. Error detecting and error correcting codes. The Bell System
Technical Journal 29, 2 (1950), 147–160. https://doi.org/10.1002/j.1538-7305.1950.
tb00463.x

Chris Harrison, Robert Xiao, and Scott Hudson. 2012. Acoustic barcodes: passive,
durable and inexpensive notched identification tags. In Proceedings of the 25th
annual ACM symposium on User interface software and technology (UIST ’12).
Association for Computing Machinery, New York, NY, USA, 563–568. https:
//doi.org/10.1145/2380116.2380187

Selig Hecht. 1924. The Visual Discrimination Of Intensity and The Weber-Fechner
Law. Journal of General Physiology 7, 2 (Nov. 1924), 235–267. https://doi.org/10.
1085/jgp.7.2.235

Florian Heller, Jan Thar, Dennis Lewandowski, Mirko Hartmann, Pierre Schoonbrood,
Sophy Stönner, Simon Voelker, and Jan Borchers. 2018. CutCAD - An Open-source
Tool to Design 3D Objects in 2D. In Proceedings of the 2018 Designing Interactive
Systems Conference (DIS ’18). Association for Computing Machinery, New York, NY,
USA, 1135–1139. https://doi.org/10.1145/3196709.3196800

Lars Erik Holmquist. 2006. Tagging the world. Interactions 13, 4 (July 2006), 51.
https://doi.org/10.1145/1142169.1142201

Matilde Bisballe Jensen, Jørgen Blindheim, and Martin Steinert. 2017. Prototyping
shape-changing interfaces - An evaluation of living hinges’ abilities to resemble
organic, shape-changing interfaces. In 21st International Conference on Engineering
Design (ICED17).

Weiwei Jiang, Chaofan Wang, Zhanna Sarsenbayeva, Andrew Irlitti, Jarrod Knibbe,
Tilman Dingler, Jorge Goncalves, and Vassilis Kostakos. 2021. InfoPrint: Embedding
Information into 3D Printed Objects. https://doi.org/10.48550/arXiv.2112.00189
arXiv:2112.00189 [cs].

Yuki Kubo, Kana Eguchi, and Ryosuke Aoki. 2020. 3D-Printed Object Identification
Method using Inner Structure Patterns Configured by Slicer Software. In Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems
(CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–7.
https://doi.org/10.1145/3334480.3382847

Maria Larsson, Hironori Yoshida, Nobuyuki Umetani, and Takeo Igarashi. 2020. Tsugite:
Interactive Design and Fabrication of Wood Joints. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (UIST ’20). Association
for Computing Machinery, New York, NY, USA, 317–327. https://doi.org/10.1145/
3379337.3415899

Danny Leen, Tom Veuskens, Kris Luyten, and Raf Ramakers. 2019. JigFab: Compu-
tational Fabrication of Constraints to Facilitate Woodworking with Power Tools.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, Glasgow Scotland Uk, 1–12. https://doi.org/10.1145/3290605.3300386

Dingzeyu Li, Avinash S Nair, Shree K Nayar, and Changxi Zheng. 2017. AirCode.
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology - UIST ’17 (2017). https://doi.org/10.1145/3126594.3126635

Zehua Ma, Hang Zhou, and Weiming Zhang. 2023. AnisoTag: 3D Printed Tag on
2D Surface via Reflection Anisotropy. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI ’23). Association for Computing
Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3544548.3581024

Shiran Magrisso, MoranMizrahi, and Amit Zoran. 2018. Digital Joinery For Hybrid Car-
pentry. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Sys-
tems. ACM, Montreal QC Canada, 1–11. https://doi.org/10.1145/3173574.3173741

Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng. 2019. LayerCode:
optical barcodes for 3D printed shapes. ACM Transactions on Graphics 38, 4 (July
2019), 112:1–112:14. https://doi.org/10.1145/3306346.3322960

Hanna Matusik and Mina Konakovic Lukovic. 2023. ObjGen: Constructing Objects
with Digital Genetic Information. In Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems. ACM, Hamburg Germany, 1–8. https:
//doi.org/10.1145/3544549.3585781

Luke McCathie. 2004. The advantages and disadvantages of barcodes and radio frequency
identification in supply chain management. Honours Thesis. University of Wol-
longong, Wollongong, Australia. https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.900.3771&rep=rep1&type=pdf

James McCrae, Nobuyuki Umetani, and Karan Singh. 2014. FlatFitFab: interactive
modeling with planar sections. In Proceedings of the 27th annual ACM symposium
on User interface software and technology. ACM, Honolulu Hawaii USA, 13–22.
https://doi.org/10.1145/2642918.2647388

National Optical Astronomy Observatory. 2016. Recommended Light Levels (Illumi-
nance) for Outdoor and Indoor Venues. Technical Report. Association of Universities
for Research in Astronomy.

Omron. 2015. The Most Common Causes of Unreadable Barcodes. Technical Report.
Association for Advancing Automation. https://www.automate.org/tech-papers/
the-most-common-causes-of-unreadable-barcodes

Mehmet Ozdemir and Zjenja Doubrovski. 2023. Xpandables: Single-filament Multi-
property 3D Printing by Programmable Foaming. In Extended Abstracts of the 2023
CHI Conference on Human Factors in Computing Systems (CHI EA ’23). Association
for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/
3544549.3585731

Keunwoo Park and Patrick Baudisch. 2022. FoolProofJoint: Reducing Assembly Errors
of Laser Cut 3D Models by Means of Custom Joint Patterns. In Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems. ACM.

I. S. Reed and G. Solomon. 1960. Polynomial Codes Over Certain Finite Fields. J. Soc.
Indust. Appl. Math. 8, 2 (1960), 300–304. https://doi.org/10.1137/0108018 _eprint:
https://doi.org/10.1137/0108018.

Alec Rivers, Ilan E. Moyer, and Frédo Durand. 2012. Position-correcting tools for
2D digital fabrication. ACM Transactions on Graphics 31, 4 (July 2012), 88:1–88:7.
https://doi.org/10.1145/2185520.2185584

https://doi.org/10.1561/1100000055
https://doi.org/10.1561/1100000055
https://doi.org/10.1145/3290605.3300796
https://doi.org/10.1016/j.cag.2015.07.003
https://doi.org/10.1145/3491101.3516510
https://doi.org/10.1145/3472749.3474733
https://doi.org/10.1145/3472749.3474733
https://doi.org/10.1145/3313831.3376202
https://doi.org/10.1145/3586183
https://doi.org/10.1145/3544549.3585905
https://doi.org/10.1145/3544549.3585905
https://doi.org/10.1145/3491102.3501951
https://doi.org/10.1145/3491102.3501951
https://doi.org/10.1145/3491101.3519905
https://doi.org/10.1145/3411764.3445551
https://www.defproc.co.uk/analysis/lattice-hinge-design-minimum-bend-radius/
https://www.defproc.co.uk/analysis/lattice-hinge-design-minimum-bend-radius/
https://doi.org/10.1145/3379337.3415876
https://doi.org/10.1109/TVCG.2020.3030351
https://doi.org/10.1145/3430524.3440645
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1145/2380116.2380187
https://doi.org/10.1145/2380116.2380187
https://doi.org/10.1085/jgp.7.2.235
https://doi.org/10.1085/jgp.7.2.235
https://doi.org/10.1145/3196709.3196800
https://doi.org/10.1145/1142169.1142201
https://doi.org/10.48550/arXiv.2112.00189
https://doi.org/10.1145/3334480.3382847
https://doi.org/10.1145/3379337.3415899
https://doi.org/10.1145/3379337.3415899
https://doi.org/10.1145/3290605.3300386
https://doi.org/10.1145/3126594.3126635
https://doi.org/10.1145/3544548.3581024
https://doi.org/10.1145/3173574.3173741
https://doi.org/10.1145/3306346.3322960
https://doi.org/10.1145/3544549.3585781
https://doi.org/10.1145/3544549.3585781
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.900.3771&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.900.3771&rep=rep1&type=pdf
https://doi.org/10.1145/2642918.2647388
https://www.automate.org/tech-papers/the-most-common-causes-of-unreadable-barcodes
https://www.automate.org/tech-papers/the-most-common-causes-of-unreadable-barcodes
https://doi.org/10.1145/3544549.3585731
https://doi.org/10.1145/3544549.3585731
https://doi.org/10.1137/0108018
https://doi.org/10.1145/2185520.2185584

StructCode: Leveraging Fabrication Artifacts to Store Data in Laser-Cut Objects SCF ’23, October 8–10, 2023, New York City, NY, USA

Thijs Roumen, Yannis Kommana, Ingo Apel, Conrad Lempert, Markus Brand, Erik
Brendel, Laurenz Seidel, Lukas Rambold, Carl Goedecken, Pascal Crenzin, Ben
Hurdelhey, Muhammad Abdullah, and Patrick Baudisch. 2021. Assembler3: 3D
Reconstruction of Laser-Cut Models. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (CHI ’21). Association for Computing
Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3411764.3445453

Greg Saul, Manfred Lau, Jun Mitani, and Takeo Igarashi. 2010. SketchChair: an all-
in-one chair design system for end users. In Proceedings of the fifth international
conference on Tangible, embedded, and embodied interaction. ACM, Funchal Portugal,
73–80. https://doi.org/10.1145/1935701.1935717

Martin Schmitz, Martin Herbers, Niloofar Dezfuli, Sebastian Günther, and Max
Mühlhäuser. 2018. Off-Line Sensing: Memorizing Interactions in Passive 3D-Printed
Objects. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM, Montreal QC Canada, 1–8. https://doi.org/10.1145/3173574.3173756

Yuliy Schwartzburg and Mark Pauly. 2013. Fabrication-aware Design with Intersecting
Planar Pieces. Computer Graphics Forum 32, 2pt3 (May 2013), 317–326. https:
//doi.org/10.1111/cgf.12051

Chen Song, Zhengxiong Li, Wenyao Xu, Chi Zhou, Zhanpeng Jin, and Kui Ren. 2018.
My Smartphone Recognizes Genuine QR Codes!: Practical Unclonable QR Code via
3D Printing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 2 (July 2018), 1–20. https://doi.org/10.1145/3214286

Peter Sturm. 2014. Pinhole Camera Model. In Computer Vision: A Reference Guide,
Katsushi Ikeuchi (Ed.). Springer US, Boston, MA, 610–613. https://doi.org/10.1007/
978-0-387-31439-6_472

Hui Sun, Saurav Maji, Anantha P. Chandrakasan, and Benedetto Marelli. 2023. Inte-
grating biopolymer design with physical unclonable functions for anticounterfeit-
ing and product traceability in agriculture. Science Advances 9, 12 (March 2023),
eadf1978. https://doi.org/10.1126/sciadv.adf1978 Publisher: American Association
for the Advancement of Science.

Matthew Tancik, Ben Mildenhall, and Ren Ng. 2020. StegaStamp: Invisible Hyperlinks
in Physical Photographs. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, Seattle, WA, USA, 2114–2123. https://doi.org/10.
1109/CVPR42600.2020.00219

Ryuhei Tenmoku, Yusuke Yoshida, Fumihisa Shibata, Asako Kimura, and Hideyuki
Tamura. 2007. Visually Elegant and Robust Semi-Fiducials for Geometric Registra-
tion in Mixed Reality. In 2007 6th IEEE and ACM International Symposium on Mixed
and Augmented Reality. IEEE, Nara, Japan, 1–2. https://doi.org/10.1109/ISMAR.
2007.4538857

Rundong Tian, Sarah Sterman, Ethan Chiou, Jeremy Warner, and Eric Paulos. 2018.
MatchSticks: Woodworking through Improvisational Digital Fabrication. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3173574.3173723

Dinkar Wadhwa. 2020. The Series of a Four-node Motif can Provide Sensitive Detection
over Arbitrary Range of Signal, thereby Explain Weber’s Law in Higher-Order Sensory
Processes, and Compute Logarithm. Technical Report. bioRxiv. 2020.04.08.032193
pages. https://doi.org/10.1101/2020.04.08.032193 Section: New Results Type: article.

Ge Wang, Chen Qian, Jinsong Han, Wei Xi, Han Ding, Zhiping Jiang, and Jizhong
Zhao. 2016. Verifiable smart packaging with passive RFID. In Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
ACM, Heidelberg Germany, 156–166. https://doi.org/10.1145/2971648.2971692

Roy Want, Kenneth P. Fishkin, Anuj Gujar, and Beverly L. Harrison. 1999. Bridging
physical and virtual worlds with electronic tags. In Proceedings of the SIGCHI
conference on Human factors in computing systems the CHI is the limit - CHI ’99.
ACM Press, Pittsburgh, Pennsylvania, United States, 370–377. https://doi.org/10.
1145/302979.303111

Mian Wei and Karan Singh. 2017. Bend-a-rule: a fabrication-based workflow for 3D
planar contour acquisition. In Proceedings of the 1st Annual ACM Symposium on
Computational Fabrication. ACM, Cambridge Massachusetts, 1–7. https://doi.org/
10.1145/3083157.3083164

Christian Weichel, Manfred Lau, and Hans Gellersen. 2013. Enclosed: a component-
centric interface for designing prototype enclosures. In Proceedings of the 7th
International Conference on Tangible, Embedded and Embodied Interaction - TEI ’13.
ACM Press, Barcelona, Spain, 215. https://doi.org/10.1145/2460625.2460659

Karl D D Willis and Andrew D Wilson. 2013. InfraStructs: fabricating information
inside physical objects for imaging in the terahertz region. ACM Trans. Graph. 32,
4 (July 2013), 1–10. https://doi.org/10.1145/2461912.2461936 Place: New York, NY,
USA Publisher: Association for Computing Machinery.

Chang Xiao, Cheng Zhang, and Changxi Zheng. 2018. FontCode: Embedding Informa-
tion in Text Documents Using Glyph Perturbation. ACM Transactions on Graphics
37, 2 (April 2018), 1–16. https://doi.org/10.1145/3152823

Garima Yadav, Saurabh Maheshwari, and Anjali Agarwal. 2014. Contrast limited
adaptive histogram equalization based enhancement for real time video system.
In 2014 International Conference on Advances in Computing, Communications and
Informatics (ICACCI). 2392–2397. https://doi.org/10.1109/ICACCI.2014.6968381

Junichi Yamaoka, Mustafa Doga Dogan, Katarina Bulovic, Kazuya Saito, Yoshihiro
Kawahara, Yasuaki Kakehi, and Stefanie Mueller. 2019. FoldTronics: Creating
3D Objects with Integrated Electronics Using Foldable Honeycomb Structures. In

Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/
10.1145/3290605.3300858

Shengdong Zhao, Koichi Nakamura, Kentaro Ishii, and Takeo Igarashi. 2009. Magic
cards: a paper tag interface for implicit robot control. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, Boston MA USA, 173–
182. https://doi.org/10.1145/1518701.1518730

Clement Zheng, Ellen Yi-Luen Do, and Jim Budd. 2017. Joinery: Parametric Joint
Generation for Laser Cut Assemblies. In Proceedings of the 2017 ACM SIGCHI
Conference on Creativity and Cognition (C&C ’17). Association for Computing
Machinery, New York, NY, USA, 63–74. https://doi.org/10.1145/3059454.3059459

Amy Zhu, Adriana Schulz, and Zachary Tatlock. 2023. Exploring Self-Embedded
Knitting Programs with Twine. In Proceedings of the 11th ACM SIGPLAN In-
ternational Workshop on Functional Art, Music, Modelling, and Design (FARM
2023). Association for Computing Machinery, New York, NY, USA, 25–31. https:
//doi.org/10.1145/3609023.3609805

https://doi.org/10.1145/3411764.3445453
https://doi.org/10.1145/1935701.1935717
https://doi.org/10.1145/3173574.3173756
https://doi.org/10.1111/cgf.12051
https://doi.org/10.1111/cgf.12051
https://doi.org/10.1145/3214286
https://doi.org/10.1007/978-0-387-31439-6_472
https://doi.org/10.1007/978-0-387-31439-6_472
https://doi.org/10.1126/sciadv.adf1978
https://doi.org/10.1109/CVPR42600.2020.00219
https://doi.org/10.1109/CVPR42600.2020.00219
https://doi.org/10.1109/ISMAR.2007.4538857
https://doi.org/10.1109/ISMAR.2007.4538857
https://doi.org/10.1145/3173574.3173723
https://doi.org/10.1101/2020.04.08.032193
https://doi.org/10.1145/2971648.2971692
https://doi.org/10.1145/302979.303111
https://doi.org/10.1145/302979.303111
https://doi.org/10.1145/3083157.3083164
https://doi.org/10.1145/3083157.3083164
https://doi.org/10.1145/2460625.2460659
https://doi.org/10.1145/2461912.2461936
https://doi.org/10.1145/3152823
https://doi.org/10.1109/ICACCI.2014.6968381
https://doi.org/10.1145/3290605.3300858
https://doi.org/10.1145/3290605.3300858
https://doi.org/10.1145/1518701.1518730
https://doi.org/10.1145/3059454.3059459
https://doi.org/10.1145/3609023.3609805
https://doi.org/10.1145/3609023.3609805

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tag Location: Inside, Surface, Structure
	2.2 Data Complexity: Identifiers, Information
	2.3 Complexity of Tagging Approach: Fabrication, Detection

	3 Embedding Data in StructCodes
	3.1 Identifying Features Suitable for StructCodes
	3.2 Structural Embedding of Data Bits
	3.3 Encoding Scheme

	4 End-to-End Workflow
	4.1 User Interface for Embedding StructCodes
	4.2 Mobile Interface for Reading StructCodes

	5 Applications
	5.1 Embedding Identifiers for Static or Dynamic Labels
	5.2 Embedding Context: Resources and Instructions
	5.3 Embedding Overlaid Media

	6 Detection of StructCodes
	6.1 Detection of Finger Joints
	6.2 Detection of Living Hinges
	6.3 Evaluation of the Detection Pipelines

	7 Mechanical Evaluation
	7.1 Compression Evaluation of Finger Joints
	7.2 Bending Evaluation of Living Hinges

	8 Software Implementation
	9 Discussion
	10 Conclusion
	Acknowledgments
	References

